Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 21(4): 410-415, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35145257

RESUMO

Rare-earth intermetallic compounds exhibit rich phenomena induced by the interplay between localized f orbitals and conduction electrons. However, since the energy scale of the crystal-electric-field splitting is only a few millielectronvolts, the nature of the mobile electrons accompanied by collective crystal-electric-field excitations has not been unveiled. Here, we examine the low-energy electronic structures of CeSb through the anomalous magnetostructural transitions below the Néel temperature, ~17 K, termed the 'devil's staircase', using laser angle-resolved photoemission, Raman and neutron scattering spectroscopies. We report another type of electron-boson coupling between mobile electrons and quadrupole crystal-electric-field excitations of the 4f orbitals, which renormalizes the Sb 5p band prominently, yielding a kink at a very low energy (~7 meV). This coupling strength is strong and exhibits anomalous step-like enhancement during the devil's staircase transition, unveiling a new type of quasiparticle, named the 'multipole polaron', comprising a mobile electron dressed with a cloud of the quadrupole crystal-electric-field polarization.

2.
Nat Commun ; 11(1): 2888, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514054

RESUMO

Solids with competing interactions often undergo complex phase transitions with a variety of long-periodic modulations. Among such transition, devil's staircase is the most complex phenomenon, and for it, CeSb is the most famous material, where a number of the distinct phases with long-periodic magnetostructures sequentially appear below the Néel temperature. An evolution of the low-energy electronic structure going through the devil's staircase is of special interest, which has, however, been elusive so far despite 40 years of intense research. Here, we use bulk-sensitive angle-resolved photoemission spectroscopy and reveal the devil's staircase transition of the electronic structures. The magnetic reconstruction dramatically alters the band dispersions at each transition. Moreover, we find that the well-defined band picture largely collapses around the Fermi energy under the long-periodic modulation of the transitional phase, while it recovers at the transition into the lowest-temperature ground state. Our data provide the first direct evidence for a significant reorganization of the electronic structures and spectral functions occurring during the devil's staircase.

3.
Phys Rev Lett ; 124(13): 136404, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302163

RESUMO

The chiral crystal is characterized by a lack of mirror symmetry and inversion center, resulting in the inequivalent right- and left-handed structures. In the noncentrosymmetric crystal structure, the spin and momentum of electrons are expected to be locked in the reciprocal space with the help of the spin-orbit interaction. To reveal the spin textures of chiral crystals, we investigate the spin and electronic structure in a p-type semiconductor, elemental tellurium, with the simplest chiral structure by using spin- and angle-resolved photoemission spectroscopy. Our data demonstrate that the highest valence band crossing the Fermi level has a spin component parallel to the electron momentum around the Brillouin zone corners. Significantly, we have also confirmed that the spin polarization is reversed in the crystal with the opposite chirality. The results indicate that the spin textures of the right- and left-handed chiral crystals are hedgehoglike, leading to unconventional magnetoelectric effects and nonreciprocal phenomena.

4.
Phys Rev Lett ; 120(8): 086402, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29543003

RESUMO

Experimental determinations of bulk band topology in the solid states have been so far restricted to only indirect investigation through the probing of surface states predicted by electronic structure calculations. We here present an alternative approach to determine the band topology by means of bulk-sensitive soft x-ray angle-resolved photoemission spectroscopy. We investigate the bulk electronic structures of the series materials, Ce monopnictides (CeP, CeAs, CeSb, and CeBi). By performing a paradigmatic study of the band structures as a function of their spin-orbit coupling, we draw the topological phase diagram and unambiguously reveal the topological phase transition from a trivial to a nontrivial regime in going from CeP to CeBi induced by the band inversion. The underlying mechanism of the phase transition is elucidated in terms of spin-orbit coupling in concert with their semimetallic band structures. Our comprehensive observations provide a new insight into the band topology hidden in the bulk states.

5.
Nat Mater ; 16(11): 1090-1095, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967918

RESUMO

Weyl fermions have been observed as three-dimensional, gapless topological excitations in weakly correlated, inversion-symmetry-breaking semimetals. However, their realization in spontaneously time-reversal-symmetry-breaking phases of strongly correlated materials has so far remained hypothetical. Here, we report experimental evidence for magnetic Weyl fermions in Mn3Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect, even at room temperature. Detailed comparison between angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3d electrons. Magnetotransport measurements provide strong evidence for the chiral anomaly of Weyl fermions-namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. Since weak magnetic fields (approximately 10 mT) are adequate to control the distribution of Weyl points and the large fictitious fields (equivalent to approximately a few hundred T) produced by them in momentum space, our discovery lays the foundation for a new field of science and technology involving the magnetic Weyl excitations of strongly correlated electron systems such as Mn3Sn.

6.
Phys Rev Lett ; 117(24): 247001, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-28009182

RESUMO

We use a surface-selective angle-resolved photoemission spectroscopy and unveil the electronic nature on the topmost layer of Sr_{2}RuO_{4} crystal, consisting of slightly rotated RuO_{6} octahedrons. The γ band derived from the 4d_{xy} orbital is found to be about three times narrower than that for the bulk. This strongly contrasts with a subtle variation seen in the α and ß bands derived from the one-dimensional 4d_{xz/yz}. This anomaly is reproduced by the dynamical mean-field theory calculations, introducing not only the on-site Hubbard interaction but also the significant Hund's coupling. We detect a coherence-to-incoherence crossover theoretically predicted for Hund's metals, which has been recognized only recently. The crossover temperature in the surface is about half that of the bulk, indicating that the naturally generated monolayer of reconstructed Sr_{2}RuO_{4} is extremely correlated and well isolated from the underlying crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...