Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biomed Mater ; 17(3)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35334477

RESUMO

Due to many negative and undesirable side effects from the use of permanent implants, the development of temporary implants based on biocompatible and biodegradable materials is a promising area of modern medicine. In the presented study, we have investigated complex-shaped iron-silicon (Fe-Si) scaffolds that can be used as potential biodegradable framework structures for solid implants for bone grafting. Since iron and silicon are biocompatible materials, and their alloy should also have biocompatibility. It has been demonstrated that cells, mesenchymal stromal cells derived from the human umbilical cord (UC-MSC) and 3T3, were attached to, spread, and proliferated on the Fe-Si scaffolds' surface. Most of UC-MSC and 3T3 remained viable, only single dead cells were observed. According to the results of biological testing, the scaffolds have shown that deposition of calcium phosphate particles occurs on day one in the scaffold at the defect site that can be used as a primary marker of osteodifferentiation. These results demonstrate that the 3D-printed porous iron-silicon (Fe-Si) alloy scaffolds are promising structures for bone grafting and regeneration.


Assuntos
Ferro , Silício , Implantes Absorvíveis , Ligas/química , Humanos , Ferro/química , Porosidade , Impressão Tridimensional , Alicerces Teciduais/química
2.
J Phys Chem Lett ; 11(12): 4859-4865, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32515198

RESUMO

Supercapacitors based on carbon nanomaterials are attracting much attention because of their high capacitance enabled by large specific surface area. The introduction of heteroatoms such as N or O enhances the specific capacitance of these materials. However, the mechanisms that lead to the increase in the specific capacitance are not yet well-studied. In this Letter, we demonstrate an effective method for modification of the surface of carbon nanowalls (CNWs) using DC plasma in atmospheres of O2, N2, and their mixture. Processing in the plasma leads to the incorporation of ∼4 atom % nitrogen and ∼10 atom % oxygen atoms. Electrochemical measurements reveal that CNWs functionalized with oxygen groups are characterized by higher capacitance. The specific capacitance for samples with oxygen reaches 8.9 F cm-3 at a scan rate of 20 mV s-1. In contrast, the nitrogen-doped samples demonstrate a specific capacitance of 4.4 F cm-3 at the same scan rate. The mechanism of heteroatom incorporation into the carbon lattice is explained using density functional theory calculations.

3.
J Acoust Soc Am ; 133(6): 3727-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23742328

RESUMO

A mathematical model describing dynamics of the cluster of gas bubbles in an acoustic field is presented. According to this model a cluster is considered as a large drop with microbubbles inside. The proposed model is used as a basis (1) for an analytical study of small bubble oscillations in mono- and polydisperse clusters and (2) for numerical investigations of nonlinear bubble oscillations and of the diffusion stability of gas bubbles in the cluster. A synchronization of the collapse phases of bubbles with different radii and collapse intensification for bubbles of one size in the presence of bubbles of other size is found. These effects are explained by the interaction between the bubbles of different radii in the cluster. For the cluster with one radius bubbles the numerical values are obtained for the initial gas concentrations in the liquid at which the bubbles tend to one of two equilibrium states because of rectified diffusion. It is found that the cluster with the bubbles of two different radii tends to become a cluster with the bubbles of one radius due to rectified diffusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...