Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012093, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512999

RESUMO

Rift Valley fever virus (RVFV) is a viral zoonosis that causes severe disease in ruminants and humans. The nonstructural small (NSs) protein is the primary virulence factor of RVFV that suppresses the host's antiviral innate immune response. Bioinformatic analysis and AlphaFold structural modeling identified four putative LC3-interacting regions (LIR) motifs (NSs 1-4) in the RVFV NSs protein, which suggest that NSs interacts with the host LC3-family proteins. Using, isothermal titration calorimetry, X-ray crystallography, co-immunoprecipitation, and co-localization experiments, the C-terminal LIR motif (NSs4) was confirmed to interact with all six human LC3 proteins. Phenylalanine at position 261 (F261) within NSs4 was found to be critical for the interaction of NSs with LC3, retention of LC3 in the nucleus, as well as the inhibition of autophagy in RVFV infected cells. These results provide mechanistic insights into the ability of RVFV to overcome antiviral autophagy through the interaction of NSs with LC3 proteins.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/metabolismo , Autofagia , Antivirais/metabolismo
2.
Proteomics ; 23(5): e2200237, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36480152

RESUMO

The innate immune protection provided by cationic antimicrobial peptides (CAMPs) has been shown to extend to antiviral activity, with putative mechanisms of action including direct interaction with host cells or pathogen membranes. The lack of therapeutics available for the treatment of viruses such as Venezuelan equine encephalitis virus (VEEV) underscores the urgency of novel strategies for antiviral discovery. American alligator plasma has been shown to exhibit strong in vitro antibacterial activity, and functionalized hydrogel particles have been successfully employed for the identification of specific CAMPs from alligator plasma. Here, a novel bait strategy in which particles were encapsulated in membranes from either healthy or VEEV-infected cells was implemented to identify peptides preferentially targeting infected cells for subsequent evaluation of antiviral activity. Statistical analysis of peptide identification results was used to select five candidate peptides for testing, of which one exhibited a dose-dependent inhibition of VEEV and also significantly inhibited infectious titers. Results suggest our bioprospecting strategy provides a versatile platform that may be adapted for antiviral peptide identification from complex biological samples.


Assuntos
Jacarés e Crocodilos , Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina Venezuelana , Animais , Cavalos , Vírus da Encefalite Equina Venezuelana/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Encefalomielite Equina Venezuelana/tratamento farmacológico , Encefalomielite Equina Venezuelana/prevenção & controle , Bioprospecção , Replicação Viral , Peptídeos
3.
Life (Basel) ; 12(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36362848

RESUMO

The study aimed to investigate the therapeutic impact of intravesical instillation of dehydrated human amnion-chorion membrane (HACM) extracts based on the primary pathological feature of interstitial cystitis (IC). We divided 15 female Sprague-Dawley rats into three groups: sham control, IC, and treatment group. IC was induced by 400-µL lipopolysaccharide (1 µg/µL), and it was replaced with normal saline in the sham control group. After IC induction, 300 µL dehydrated HACM extracts (3 mg/kg) were instilled into rats' urinary bladder weekly for 3 weeks. General histology, inflammatory cytokines, NF-κB, oxidative markers, and western blots results were examined. The urothelial denudation, mast-cell infiltration, and tissues fibrosis were all ameliorated. The elevated TNF-α, IL-1ß, IL-6, IL-8, and NF-κB were all down-regulated by dehydrated HACM extracts (p < 0.05). For reactive oxygen species, increased malondialdehyde, decreased superoxide dismutase, and decreased glutathione peroxidase were all reversed (p < 0.05). In apoptosis of IC, elevated Bax and suppressed Bcl-2 were improved (p < 0.05) after instillation. In fibrosis, dysregulated TGFß/R-Smads/Snail was corrected by the instillation of dehydrated HACM (p < 0.05). In conclusion, dehydrated HACM extracts could be a powerful remedy in treating IC by reconstructing the damaged urothelium, reducing mast-cell infiltration and inflammatory reactions, and ameliorating fibrotic changes.

4.
Front Microbiol ; 13: 959577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090095

RESUMO

SARS-CoV-2, the virus behind the deadly COVID-19 pandemic, continues to spread globally even as vaccine strategies are proving effective in preventing hospitalizations and deaths. However, evolving variants of the virus appear to be more transmissive and vaccine efficacy toward them is waning. As a result, SARS-CoV-2 will continue to have a deadly impact on public health into the foreseeable future. One strategy to bypass the continuing problem of newer variants is to target host proteins required for viral replication. We have used this host-targeted antiviral (HTA) strategy that targets DDX3X (DDX3), a host DEAD-box RNA helicase that is usurped by SARS-CoV-2 for virus production. We demonstrated that targeting DDX3 with RK-33, a small molecule inhibitor, reduced the viral load in four isolates of SARS-CoV-2 (Lineage A, and Lineage B Alpha, Beta, and Delta variants) by one to three log orders in Calu-3 cells. Furthermore, proteomics and RNA-seq analyses indicated that most SARS-CoV-2 genes were downregulated by RK-33 treatment. Also, we show that the use of RK-33 decreases TMPRSS2 expression, which may be due to DDX3s ability to unwind G-quadraplex structures present in the TMPRSS2 promoter. The data presented support the use of RK-33 as an HTA strategy to control SARS-CoV-2 infection, irrespective of its mutational status, in humans.

5.
bioRxiv ; 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35262079

RESUMO

SARS-CoV-2, the virus behind the deadly COVID-19 pandemic, continues to spread globally even as vaccine strategies are proving effective in preventing hospitalizations and deaths. However, evolving variants of the virus appear to be more transmissive and vaccine efficacy towards them is waning. As a result, SARS-CoV-2 will continue to have a deadly impact on public health into the foreseeable future. One strategy to bypass the continuing problem of newer variants is to target host proteins required for viral replication. We have used this host-targeted antiviral (HTA) strategy that targets DDX3, a host DEAD-box RNA helicase that is usurped by SARS-CoV-2 for virus production. We demonstrated that targeting DDX3 with RK-33, a small molecule inhibitor, reduced the viral load in four isolates of SARS-CoV-2 (Lineage A, and Lineage B Alpha, Beta, and Delta variants) by one to three log orders in Calu-3 cells. Furthermore, proteomics and RNA-seq analyses indicated that most SARS-CoV-2 genes were downregulated by RK-33 treatment. Also, we show that the use of RK-33 decreases TMPRSS2 expression, which may be due to DDX3s ability to unwind G-quadraplex structures present in the TMPRSS2 promoter. The data presented supports the use of RK-33 as an HTA strategy to control SARS-CoV-2 infection, irrespective of its mutational status, in humans.

6.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681813

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic change in alveolar epithelial cells and leads to the irreversible deterioration of pulmonary function. Transforming growth factor-beta 1 (TGF-ß1)-induced epithelial-mesenchymal transition (EMT) in type 2 lung epithelial cells contributes to excessive collagen deposition and plays an important role in IPF. Atractylodin (ATL) is a kind of herbal medicine that has been proven to protect intestinal inflammation and attenuate acute lung injury. Our study aimed to determine whether EMT played a crucial role in the pathogenesis of pulmonary fibrosis and whether EMT can be utilized as a therapeutic target by ATL treatment to mitigate IPF. To address this topic, we took two steps to investigate: 1. Utilization of anin vitro EMT model by treating alveolar epithelial cells (A549 cells) with TGF-ß1 followed by ATL treatment for elucidating the underlying pathways, including Smad2/3 hyperphosphorylation, mitogen-activated protein kinase (MAPK) pathway overexpression, Snail and Slug upregulation, and loss of E-cadherin. Utilization of an in vivo lung injury model by treating bleomycin on mice followed by ATL treatment to demonstrate the therapeutic effectiveness, such as, less collagen deposition and lower E-cadherin expression. In conclusion, ATL attenuates TGF-ß1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in mice.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Furanos/farmacologia , Fibrose Pulmonar Idiopática/prevenção & controle , Células A549 , Células Epiteliais Alveolares/fisiologia , Animais , Bleomicina/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Furanos/uso terapêutico , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/fisiologia
7.
Viruses ; 13(6)2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205098

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that is the causative agent of the Coronavirus disease 2019 (COVID-19) pandemic. Patients with severe COVID-19 may develop acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) and require mechanical ventilation. Key features of SARS-CoV-2 induced pulmonary complications include an overexpression of pro-inflammatory chemokines and cytokines that contribute to a 'cytokine storm.' In the current study an inflammatory state in Calu-3 human lung epithelial cells was characterized in which significantly elevated transcripts of the immunostimulatory chemokines CXCL9, CXCL10, and CXCL11 were present. Additionally, an increase in gene expression of the cytokines IL-6, TNFα, and IFN-γ was observed. The transcription of CXCL9, CXCL10, IL-6, and IFN-γ was also induced in the lungs of human transgenic angiotensin converting enzyme 2 (ACE2) mice infected with SARS-CoV-2. To elucidate cell signaling pathways responsible for chemokine upregulation in SARS-CoV-2 infected cells, small molecule inhibitors targeting key signaling kinases were used. The induction of CXCL9, CXCL10, and CXCL11 gene expression in response to SARS-CoV-2 infection was markedly reduced by treatment with the AKT inhibitor GSK690693. Samples from COVID-19 positive individuals also displayed marked increases in CXCL9, CXCL10, and CXCL11 transcripts as well as transcripts in the AKT pathway. The current study elucidates potential pathway specific targets for reducing the induction of chemokines that may be contributing to SARS-CoV-2 pathogenesis via hyperinflammation.


Assuntos
COVID-19/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL11/genética , Quimiocina CXCL9/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Enzima de Conversão de Angiotensina 2/genética , Animais , Linhagem Celular , Quimiocina CXCL10/imunologia , Quimiocina CXCL11/imunologia , Quimiocina CXCL9/imunologia , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Feminino , Humanos , Inflamação , Pulmão/citologia , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia
8.
Viruses ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065980

RESUMO

Venezuelan equine encephalitis virus (VEEV) is an alphavirus that causes encephalitis. Previous work indicated that VEEV infection induced early growth response 1 (EGR1) expression, leading to cell death via the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) arm of the unfolded protein response (UPR) pathway. Loss of PERK prevented EGR1 induction and decreased VEEV-induced death. The results presented within show that loss of PERK in human primary astrocytes dramatically reduced VEEV and eastern equine encephalitis virus (EEEV) infectious titers by 4-5 log10. Loss of PERK also suppressed VEEV replication in primary human pericytes and human umbilical vein endothelial cells, but it had no impact on VEEV replication in transformed U87MG and 293T cells. A significant reduction in VEEV RNA levels was observed as early as 3 h post-infection, but viral entry assays indicated that the loss of PERK minimally impacted VEEV entry. In contrast, the loss of PERK resulted in a dramatic reduction in viral nonstructural protein translation and negative-strand viral RNA production. The loss of PERK also reduced the production of Rift Valley fever virus and Zika virus infectious titers. These data indicate that PERK is an essential factor for the translation of alphavirus nonstructural proteins and impacts multiple RNA viruses, making it an exciting target for antiviral development.


Assuntos
Alphavirus/genética , Biossíntese de Proteínas , Proteínas não Estruturais Virais/genética , eIF-2 Quinase/genética , Alphavirus/classificação , Alphavirus/fisiologia , Astrócitos/metabolismo , Astrócitos/virologia , Morte Celular , Células Cultivadas , Vírus da Encefalite Equina Venezuelana/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células HEK293 , Humanos , Pericitos/metabolismo , Pericitos/virologia , RNA Viral/metabolismo , Resposta a Proteínas não Dobradas , Proteínas não Estruturais Virais/metabolismo , eIF-2 Quinase/metabolismo
9.
Pathog Immun ; 6(1): 55-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969249

RESUMO

BACKGROUND: Host proteases have been suggested to be crucial for dissemination of MERS, SARS-CoV, and SARS-CoV-2 coronaviruses, but the relative contribution of membrane versus intracellular proteases remains controversial. Transmembrane serine protease 2 (TMPRSS2) is regarded as one of the main proteases implicated in the coronavirus S protein priming, an important step for binding of the S protein to the angiotensin-converting enzyme 2 (ACE2) receptor before cell entry. METHODS: We developed a cell-based assay to identify TMPRSS2 inhibitors. Inhibitory activity was established in SARS-CoV-2 viral load systems. RESULTS: We identified the human extracellular serine protease inhibitor (serpin) alpha 1 anti-trypsin (A1AT) as a novel TMPRSS2 inhibitor. Structural modeling revealed that A1AT docked to an extracellular domain of TMPRSS2 in a conformation that is suitable for catalysis, resembling similar serine protease inhibitor complexes. Inhibitory activity of A1AT was established in a SARS-CoV-2 viral load system. Notably, plasma A1AT levels were associated with COVID-19 disease severity. CONCLUSIONS: Our data support the key role of extracellular serine proteases in SARS CoV-2 infections and indicate that treatment with serpins, particularly the FDA-approved drug A1AT, may be effective in limiting SARS-CoV-2 dissemination by affecting the surface of the host cells.

10.
Pathogens ; 10(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801554

RESUMO

Alphaviruses are a genus of the Togaviridae family and are widely distributed across the globe. Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV), cause encephalitis and neurological sequelae while chikungunya virus (CHIKV) and Sindbis virus (SINV) cause arthralgia. There are currently no approved therapeutics or vaccines available for alphaviruses. In order to identify novel therapeutics, a V5 epitope tag was inserted into the N-terminus of the VEEV E2 glycoprotein and used to identify host-viral protein interactions. Host proteins involved in protein folding, metabolism/ATP production, translation, cytoskeleton, complement, vesicle transport and ubiquitination were identified as VEEV E2 interactors. Multiple inhibitors targeting these host proteins were tested to determine their effect on VEEV replication. The compound HA15, a GRP78 inhibitor, was found to be an effective inhibitor of VEEV, EEEV, CHIKV, and SINV. VEEV E2 interaction with GRP78 was confirmed through coimmunoprecipitation and colocalization experiments. Mechanism of action studies found that HA15 does not affect viral RNA replication but instead affects late stages of the viral life cycle, which is consistent with GRP78 promoting viral assembly or viral protein trafficking.

11.
bioRxiv ; 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33052338

RESUMO

Host proteases have been suggested to be crucial for dissemination of MERS, SARS-CoV, and SARS-CoV-2 coronaviruses, but the relative contribution of membrane versus intracellular proteases remains controversial. Transmembrane serine protease 2 (TMPRSS2) is regarded as one of the main proteases implicated in the coronavirus S protein priming, an important step for binding of the S protein to the angiotensin-converting enzyme 2 (ACE2) receptor before cell entry. The main cellular location where the SARS-CoV-2 S protein priming occurs remains debatable, therefore hampering the development of targeted treatments. Herein, we identified the human extracellular serine protease inhibitor (serpin) alpha 1 antitrypsin (A1AT) as a novel TMPRSS2 inhibitor. Structural modeling revealed that A1AT docked to an extracellular domain of TMPRSS2 in a conformation that is suitable for catalysis, resembling similar serine protease-inhibitor complexes. Inhibitory activity of A1AT was established in a SARS-CoV-2 viral load system. Notably, plasma A1AT levels were associated with COVID-19 disease severity. Our data support the key role of extracellular serine proteases in SARS-CoV-2 infections and indicate that treatment with serpins, particularly the FDA-approved drug A1AT, may be effective in limiting SARS-CoV-2 dissemination by affecting the surface of the host cells. SUMMARY: Delivery of extracellular serine protease inhibitors (serpins) such as A1AT has the capacity to reduce SARS-CoV-2 dissemination by binding and inhibiting extracellular proteases on the host cells, thus, inhibiting the first step in SARS-CoV-2 cell cycle (i.e. cell entry).

12.
bioRxiv ; 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511349

RESUMO

P-selectin glycoprotein ligand-1 (PSGL-1) is a cell surface glycoprotein that binds to P-, E-, and L-selectins to mediate the tethering and rolling of immune cells on the surface of the endothelium for cell migration into inflamed tissues. PSGL-1 has been identified as an interferon-γ (INF-γ)-regulated factor that restricts HIV-1 infectivity, and has recently been found to possess broad-spectrum antiviral activities. Here we report that the expression of PSGL-1 in virus-producing cells impairs the incorporation of SARS-CoV and SARS-CoV-2 spike (S) glycoproteins into pseudovirions and blocks virus attachment and infection of target cells. These findings suggest that PSGL-1 may potentially inhibit coronavirus replication in PSGL-1+ cells.

13.
PLoS Pathog ; 16(3): e1008282, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150585

RESUMO

Protein phosphorylation plays an important role during the life cycle of many viruses. Venezuelan equine encephalitis virus (VEEV) capsid protein has recently been shown to be phosphorylated at four residues. Here those studies are extended to determine the kinase responsible for phosphorylation and the importance of capsid phosphorylation during the viral life cycle. Phosphorylation site prediction software suggests that Protein Kinase C (PKC) is responsible for phosphorylation of VEEV capsid. VEEV capsid co-immunoprecipitated with PKCδ, but not other PKC isoforms and siRNA knockdown of PKCδ caused a decrease in viral replication. Furthermore, knockdown of PKCδ by siRNA decreased capsid phosphorylation. A virus with capsid phosphorylation sites mutated to alanine (VEEV CPD) displayed a lower genomic copy to pfu ratio than the parental virus; suggesting more efficient viral assembly and more infectious particles being released. RNA:capsid binding was significantly increased in the mutant virus, confirming these results. Finally, VEEV CPD is attenuated in a mouse model of infection, with mice showing increased survival and decreased clinical signs as compared to mice infected with the parental virus. Collectively our data support a model in which PKCδ mediated capsid phosphorylation regulates viral RNA binding and assembly, significantly impacting viral pathogenesis.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Encefalite Equina Venezuelana/metabolismo , Encefalomielite Equina Venezuelana/enzimologia , Proteína Quinase C-delta/metabolismo , RNA Viral/metabolismo , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/virologia , Feminino , Cavalos , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Endogâmicos C3H , Fosforilação , Ligação Proteica , Proteína Quinase C-delta/genética , RNA Viral/genética
14.
Viruses ; 13(1)2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396594

RESUMO

P-selectin glycoprotein ligand-1 (PSGL-1) is a cell surface glycoprotein that binds to P-, E-, and L-selectins to mediate the tethering and rolling of immune cells on the surface of the endothelium for cell migration into inflamed tissues. PSGL-1 has been identified as an interferon-γ (INF-γ)-regulated factor that restricts HIV-1 infectivity, and has recently been found to possess broad-spectrum antiviral activities. Here we report that the expression of PSGL-1 in virus-producing cells impairs the incorporation of SARS-CoV and SARS-CoV-2 spike (S) glycoproteins into pseudovirions and blocks pseudovirus attachment and infection of target cells. These findings suggest that PSGL-1 may potentially inhibit coronavirus replication in PSGL-1+ cells.


Assuntos
COVID-19/virologia , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Vírion , Animais , Linhagem Celular , Células HEK293 , HIV-1/efeitos dos fármacos , Humanos , Interferon gama , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
15.
Virology ; 534: 14-24, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31163352

RESUMO

Chikungunya virus (CHIKV) is an important arthritogenic human pathogen that is already circulating in both hemispheres. In the present study, we substituted VLoop, located on the surface of nsP2, by other amino acid sequences. These modifications had deleterious effects on viral nuclear functions and made CHIKV incapable of interfering with the induction of type I interferon and the antiviral response in both mouse and human cells. Importantly, the identified mutations have no significant effects on the synthesis of virus-specific RNAs and viral structural proteins. The designed mutants induced a few orders of magnitude lower viremia but remained highly immunogenic in mice. Thus, the proposed modifications of nsP2 can additionally improve the safety of the attenuated strain CHIKV 181/25. Furthermore, defined mutations in the macro domain of another nonstructural protein, nsP3, additionally reduce cytopathogenicity of nsP2 mutants in human cells, and can be potentially applied for CHIKV attenuation.


Assuntos
Núcleo Celular/virologia , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Vírus Chikungunya/química , Vírus Chikungunya/genética , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Domínios Proteicos , RNA Viral/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
16.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30487275

RESUMO

Alphavirus infections are characterized by global inhibition of cellular transcription and rapid induction of a cytopathic effect (CPE) in cells of vertebrate origin. Transcriptional shutoff impedes the cellular response to alphavirus replication and prevents establishment of an antiviral state. Chikungunya virus (CHIKV) is a highly pathogenic alphavirus representative, and its nonstructural protein 2 (nsP2) plays critical roles in both inhibition of transcription and CPE development. Previously, we have identified a small peptide in Sindbis virus (SINV) nsP2 (VLoop) that determined the protein's transcriptional inhibition function. It is located in the surface-exposed loop of the carboxy-terminal domain of nsP2 and exhibits high variability between members of different alphavirus serocomplexes. In this study, we found that SINV-specific mutations could not be directly applied to CHIKV. However, by using a new selection approach, we identified a variety of new VLoop variants that made CHIKV and its replicons incapable of inhibiting cellular transcription and dramatically less cytopathic. Importantly, the mutations had no negative effect on RNA and viral replication rates. In contrast to parental CHIKV, the developed VLoop mutants were unable to block induction of type I interferon. Consequently, they were cleared from interferon (IFN)-competent cells without CPE development. Alternatively, in murine cells that have defects in type I IFN production or signaling, the VLoop mutants established persistent, noncytopathic replication. The mutations in nsP2 VLoop may be used for development of new vaccine candidates against alphavirus infections and vectors for expression of heterologous proteins.IMPORTANCE Chikungunya virus is an important human pathogen which now circulates in both the Old and New Worlds. As in the case of other Old World alphaviruses, CHIKV nsP2 not only has enzymatic functions in viral RNA replication but also is a critical inhibitor of the antiviral response and one of the determinants of CHIKV pathogenesis. In this study, we have applied a new strategy to select a variety of CHIKV nsP2 mutants that no longer exhibited transcription-inhibitory functions. The designed CHIKV variants became potent type I interferon inducers and acquired a less cytopathic phenotype. Importantly, they demonstrated the same replication rates as the parental CHIKV. Mutations in the same identified peptide of nsP2 proteins derived from other Old World alphaviruses also abolished their nuclear functions. Such mutations can be further exploited for development of new attenuated alphaviruses.


Assuntos
Vírus Chikungunya/metabolismo , Proteínas não Estruturais Virais/genética , Animais , Antivirais , Linhagem Celular , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Efeito Citopatogênico Viral/genética , Vírus de DNA/genética , Humanos , Interferon Tipo I/genética , Camundongos , Mutação , Células NIH 3T3 , RNA Viral/metabolismo , Replicon , Transdução de Sinais , Sindbis virus/genética , Sindbis virus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
17.
Front Vet Sci ; 6: 509, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32064269

RESUMO

Most of the modern techniques used for identification of viral-induced disease are based on identification of viral antigens and/or nucleic acids in patient's blood. Diagnosis in the field or in remote locations can be challenging and alternatively samples are shipped to diagnostic labs for testing. Shipments must occur under controlled temperature conditions to prevent loss of sample integrity. We have tested the ability of magnetic Nanotrap® (NT) particles to improve stability and detection of Venezuelan equine encephalitis virus (VEEV), viral capsid protein, and viral genomic RNA in whole human blood at elevated temperature and prolonged storage conditions. NT particles have previously been shown to capture and enrich multiple pathogens including respiratory syncytial virus, influenza virus, coronavirus, and Rift Valley fever virus. Our study indicates that samples incubated with NT particles had detectable levels of infectious VEEV in blood equal to or greater than samples without NT treatment across all temperatures. Viral RNA detection was increased in the presence of NT particles at later time points (72 h) and higher temperature (40°C) conditions. Likewise, detection of VEEV capsid protein was enhanced in the presence of NT particles up to 72 h at 40°C. Finally, we intranasally infected C3H mice with TC-83, the live attenuated vaccine strain of VEEV, and demonstrated that NT particles could substantially increase the detection of VEEV capsid in infected blood incubated up to 72 h at 40°C. Samples without NT particles had undetectable capsid protein levels. Taken together, our data demonstrate the ability of NT particles to preserve and enable detection of VEEV in human and mouse blood samples over time and at elevated temperatures.

18.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232189

RESUMO

Sindbis virus (SINV) is a representative member of the Alphavirus genus in the Togaviridae family. The hallmark of SINV replication in vertebrate cells is a rapid development of the cytopathic effect (CPE), which usually occurs within 24 h postinfection. Mechanistic understanding of CPE might lead to development of new prophylactic vaccines and therapeutic means against alphavirus infections. However, development of noncytopathic SINV variants and those of other Old World alphaviruses was always highly inefficient and usually resulted in selection of mutants demonstrating poor replication of the viral genome and transcription of subgenomic RNA. This likely caused a nonspecific negative effect on the rates of CPE development. The results of this study demonstrate that CPE induced by SINV and likely by other Old World alphaviruses is a multicomponent process, in which transcriptional and translational shutoffs are the key contributors. Inhibition of cellular transcription and translation is determined by SINV nsP2 and nsP3 proteins, respectively. Defined mutations in the nsP2-specific peptide between amino acids (aa) 674 and 688 prevent virus-induced degradation of the catalytic subunit of cellular-DNA-dependent RNA polymerase II and transcription inhibition and make SINV a strong type I interferon (IFN) inducer without affecting its replication rates. Mutations in the nsP3 macrodomain, which were demonstrated to inhibit its mono-ADP-ribosylhydrolase activity, downregulate the second component of CPE development, inhibition of cellular translation, and also have no effect on virus replication rates. Only the combination of nsP2- and nsP3-specific mutations in the SINV genome has a dramatic negative effect on the ability of virus to induce CPE.IMPORTANCE Alphaviruses are a group of important human and animal pathogens with worldwide distribution. Their characteristic feature is a highly cytopathic phenotype in cells of vertebrate origin. The molecular mechanism of CPE remains poorly understood. In this study, by using Sindbis virus (SINV) as a model of the Old World alphaviruses, we demonstrated that SINV-specific CPE is redundantly determined by viral nsP2 and nsP3 proteins. NsP2 induces the global transcriptional shutoff, and this nuclear function can be abolished by the mutations of the small, surface-exposed peptide in the nsP2 protease domain. NsP3, in turn, determines the development of translational shutoff, and this activity depends on nsP3 macrodomain-associated mono-ADP-ribosylhydrolase activity. A combination of defined mutations in nsP2 and nsP3, which abolish SINV-induced transcription and translation inhibition, in the same viral genome does not affect SINV replication rates but makes it noncytopathic and a potent inducer of type I interferon.


Assuntos
Infecções por Alphavirus/patologia , Cisteína Endopeptidases/metabolismo , Efeito Citopatogênico Viral , Biossíntese de Proteínas , Sindbis virus/fisiologia , Transcrição Gênica , Proteínas não Estruturais Virais/metabolismo , Infecções por Alphavirus/genética , Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Animais , Cisteína Endopeptidases/genética , Genoma Viral , Camundongos , Células NIH 3T3 , Proteínas não Estruturais Virais/genética , Vírion , Replicação Viral
19.
PLoS Pathog ; 12(8): e1005810, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27509095

RESUMO

The positive-strand RNA viruses initiate their amplification in the cell from a single genome delivered by virion. This single RNA molecule needs to become involved in replication process before it is recognized and degraded by cellular machinery. In this study, we show that distantly related New World and Old World alphaviruses have independently evolved to utilize different cellular stress granule-related proteins for assembly of complexes, which recruit viral genomic RNA and facilitate formation of viral replication complexes (vRCs). Venezuelan equine encephalitis virus (VEEV) utilizes all members of the Fragile X syndrome (FXR) family, while chikungunya and Sindbis viruses exploit both members of the G3BP family. Despite being in different families, these proteins share common characteristics, which determine their role in alphavirus replication, namely, the abilities for RNA-binding and for self-assembly into large structures. Both FXR and G3BP proteins interact with virus-specific, repeating amino acid sequences located in the C-termini of hypervariable, intrinsically disordered domains (HVDs) of viral nonstructural protein nsP3. We demonstrate that these host factors orchestrate assembly of vRCs and play key roles in RNA and virus replication. Only knockout of all of the homologs results in either pronounced or complete inhibition of replication of different alphaviruses. The use of multiple homologous proteins with redundant functions mediates highly efficient recruitment of viral RNA into the replication process. This independently evolved acquisition of different families of cellular proteins by the disordered protein fragment to support alphavirus replication suggests that other RNA viruses may utilize a similar mechanism of host factor recruitment for vRC assembly. The use of different host factors by alphavirus species may be one of the important determinants of their pathogenesis.


Assuntos
Vírus Chikungunya/fisiologia , Vírus da Encefalite Equina Venezuelana/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Sindbis virus/fisiologia , Replicação Viral/fisiologia , Animais , Proteínas de Transporte/metabolismo , DNA Helicases , Técnicas de Inativação de Genes , Hibridização In Situ , Camundongos , Microscopia Confocal , Células NIH 3T3 , Proteínas de Ligação a Poli-ADP-Ribose , Reação em Cadeia da Polimerase , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Proteínas não Estruturais Virais/metabolismo
20.
Virology ; 487: 230-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26550947

RESUMO

Alphaviruses are a family of positive-strand RNA viruses that circulate on all continents between mosquito vectors and vertebrate hosts. Despite a significant public health threat, their biology is not sufficiently investigated, and the mechanisms of alphavirus replication and virus-host interaction are insufficiently understood. In this study, we have applied a variety of experimental systems to further understand the mechanism by which infected cells detect replicating alphaviruses. Our new data strongly suggest that activation of the antiviral response by alphavirus-infected cells is determined by the integrity of viral genes encoding proteins with nuclear functions, and by the presence of two cellular pattern recognition receptors (PRRs), RIG-I and MDA5. No type I IFN response is induced in their absence. The presence of either of these PRRs is sufficient for detecting virus replication. However, type I IFN activation in response to pathogenic alphaviruses depends on the basal levels of RIG-I or MDA5.


Assuntos
Alphavirus/imunologia , RNA Helicases DEAD-box/metabolismo , Interferon beta/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Células 3T3 , Alphavirus/genética , Alphavirus/crescimento & desenvolvimento , Animais , Linhagem Celular , Cricetinae , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Imunidade Inata/imunologia , Helicase IFIH1 Induzida por Interferon , Camundongos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...