Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408130

RESUMO

Airway clearance refers to the clearing of any airway blockage caused due to foreign objects such as mud, gravel, and biomaterials such as blood, vomit, or teeth fragments using the technology of choice, portable suction devices. Currently available devices are either too heavy and bulky to be carried, or insufficiently powered to be useful despite being in accordance with the ISO 10079-1 standards. When applied to portable suction, the design and testing standards lack clinical relevancy, which is evidenced by how available portable suction devices are sparingly used in pre-hospital situations. Lack of clinical relevancy despite being in accordance with design/manufacturing standards arise due to little if any collaboration between those developing clinical standards and the bodies that maintain design and manufacturing standards. An updated set of standards is required that accurately reflects evidence-based requirements and specifications, which should promote valid, rational, and relevant engineering designs and manufacturing standards in consideration of the unique scenarios facing prehospital casualty care. This paper aims to critically review the existing standards for portable suction devices and propose modifications based on the evidence and requirements, especially for civilian prehospital and combat casualty care situations.


Assuntos
Sistema Respiratório , Sucção
2.
Lasers Surg Med ; 54(5): 702-715, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170764

RESUMO

BACKGROUND: Photothermal therapies have shown promise for treating pancreatic ductal adenocarcinoma when they can be applied selectively, but off-target heating can frustrate treatment outcomes. Improved strategies leveraging selective binding and localized heating are possible with precision medical approaches such as functionalized gold nanoparticles, but careful control of optical dosage and thermal generation would be imperative. However, the literature review revealed many groups assume liver properties for pancreas tissue or rely on insufficiently rigorous characterization studies. OBJECTIVE: The objective of this study was to determine the thermal conductivity and optical properties at 808/1064 nm wavelengths in healthy samples of fresh and frozen porcine pancreas ex vivo. METHODS: Thermal conductivity of the porcine pancreas tissue was measured by utilizing a hot plate and two K-type thermocouples. Experimental variables such as tissue sample thickness, hot plate temperature, and heat convection coefficient were estimated through the control experiments utilizing specimens with known thermal conductivity. Optical evaluations assessed light attenuation at the 808 and 1064 nm wavelengths (continuous wave, collimated beam) by measuring the light transmittance and reflectance of different tissue thicknesses. In turn, these measurements were input into an inverse adding-doubling program to estimate the optical absorption and reduced scattering coefficients. RESULTS: Interestingly, pancreas tissue thermal conductivity was demonstrated to have no significant difference (p > 0.5) between samples that were fresh, frozen for 7 days, or frozen for 14 days. Conversely, optical property assessment exhibited a significant difference (p < 0.001) between fresh and frozen tissue samples, with increased absorbance and reflectance within the frozen group. However, the optical attenuation values measured were substantially less than that of the liver or reported in previous pancreas studies, suggesting a wide overestimation of these properties. CONCLUSIONS: These thermal and optical properties are critical to the development of novel therapeutic strategies like plasmonic photothermal therapy, but perhaps more importantly, are invaluable towards informing better surgical planning and operative technique among the existing thermal approaches for treating pancreas tissue.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Temperatura Alta , Pâncreas/diagnóstico por imagem , Suínos , Condutividade Térmica
3.
Pharmaceutics ; 13(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34959414

RESUMO

Plasmonic photothermal therapy (PPTT) has potential as a superior treatment method for pancreatic cancer, a disease with high mortality partially attributable to the currently non-selective treatment options. PPTT utilizes gold nanoparticles infused into a targeted tissue volume and exposed to a specific light wavelength to induce selective hyperthermia. The current study focuses on developing this approach within an ex vivo porcine pancreas model via an innovative fiberoptic microneedle device (FMD) for co-delivering light and gold nanoparticles. The effects of laser wavelengths (808 vs. 1064 nm), irradiances (20-50 mW·mm-2), and gold nanorod (GNR) concentrations (0.1-3 nM) on tissue temperature profiles were evaluated to assess and control hyperthermic generation. The GNRs had a peak absorbance at ~800 nm. Results showed that, at 808 nm, photon absorption and subsequent heat generation within tissue without GNRs was 65% less than 1064 nm. The combination of GNRs and 808 nm resulted in a 200% higher temperature rise than the 1064 nm under similar conditions. A computational model was developed to predict the temperature shift and was validated against experimental results with a deviation of <5%. These results show promise for both a predictive model and spatially selective, tunable treatment modality for pancreatic cancer.

4.
Prehosp Disaster Med ; 35(6): 676-682, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32907690

RESUMO

Airway management is at the forefront for combat medics dealing with battlefield trauma. For military service members, compromised airways are the second leading cause of potentially survivable death on the battlefield, accounting for one in ten preventable combat deaths. Effective suction is a critical component of airway clearance. However, currently available devices are too heavy and bulky to be carried by combat medics and are insufficiently powered. The industry has not responded to the need, with companies continuing to produce models using 1970s technology. A literature review was completed with the assistance of a librarian. The databases searched included: Biomedical Research Database (BRD), Computer Retrieval of Information of Scientific Projects (CRISP), Federal Research in Progress (FEDRIP), Defense Technical Information Center (DTIC), Pub Med/Medline, and OVID. Additionally, a Google Scholar search was performed to identify nonstandard sources. After screening, a total of 40 articles were used. There were no randomized controlled trials or other high-quality evidence that addressed the issues; there was limited peer-reviewed literature on the use, effectiveness, adverse effects, and safety of suction for use in combat casualty care. A review of the available literature revealed no standards, either proposed, validated, or accepted, for the safety or avoidance of adverse effects for portable suction device use in combat casualty care. Similarly, there are no accepted standards to guide the safe use and anticipated adverse effects of suction for use in prehospital combat or emergency care. Nevertheless, there are meaningful data that can be extracted from the few studies available combined with non-clinical studies, narrative reviews and case reports, and expert opinions.


Assuntos
Manuseio das Vias Aéreas/instrumentação , Medicina Militar , Lesões Relacionadas à Guerra/terapia , Humanos
5.
J Mech Behav Biomed Mater ; 112: 104042, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32927279

RESUMO

Current clinical approaches for treating pancreatic cancer have been demonstrated as ineffective at improving midterm survival. A primary obstacle to local drug delivery is the desmoplastic nature of the peritumoral environment, which acts as a significant barrier to circulating macromolecules. To address this need, our group presents a sharp fiberoptic microcatheter capable of accessing the pancreas through transduodenal endoscope and penetrating a tumor to locally co-deliver photothermal and fluid-based therapies. Experiments sought to characterize the mechanical penetration capabilities and fluid mechanics of the fiberoptic microneedle design. A refined off-center fusion splicing technique was developed for joining a multimode fiber to the annular core of a light-guiding capillary, allowing light transmission with minimal optical loss. A novel and frugal technique for assessing the penetration force of the microneedle was conducted in a bovine gelatin tissue phantom with a Young's modulus stiffer than the high range for pancratic tissue or tumor. Buckling forces for different microneedle lengths were measured and compared against theoretical values obtained from Euler's Critical Load equation under fixed-pinned column conditions. Hydraulic resistance of different capillary lengths was evaluated and compared against the theoretical values from Hagen-Poiseuille's law, allowing assessment of contributions from different segments of the device. The results demonstrated that the microcatheter can robustly and repeatably penetrate a soft tissue phantom chosen to be a conservative model of pancreatic tissue for penetration properties. Experiments showed that a 1.5 N insertion force was required for phantom penetration with a 45° beveled needle at a 5 mm unsupported length, while the critical buckling load was measured to be approximately 4 N. In addition, the design was demonstrated to efficiently transport 1064 nm light and aqueous fluids with a 70-75% light coupling efficiency and 12,200 Pa.s/µl hydraulic resistance, respectively. These findings motivate the FMD's further development as a treatment platform for pancreatic cancer.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Animais , Bovinos , Fenômenos Mecânicos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...