Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 171(6): 1453-1467.e13, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29153834

RESUMO

We describe a multiplex genome engineering technology in Saccharomyces cerevisiae based on annealing synthetic oligonucleotides at the lagging strand of DNA replication. The mechanism is independent of Rad51-directed homologous recombination and avoids the creation of double-strand DNA breaks, enabling precise chromosome modifications at single base-pair resolution with an efficiency of >40%, without unintended mutagenic changes at the targeted genetic loci. We observed the simultaneous incorporation of up to 12 oligonucleotides with as many as 60 targeted mutations in one transformation. Iterative transformations of a complex pool of oligonucleotides rapidly produced large combinatorial genomic diversity >105. This method was used to diversify a heterologous ß-carotene biosynthetic pathway that produced genetic variants with precise mutations in promoters, genes, and terminators, leading to altered carotenoid levels. Our approach of engineering the conserved processes of DNA replication, repair, and recombination could be automated and establishes a general strategy for multiplex combinatorial genome engineering in eukaryotes.


Assuntos
Engenharia Genética/métodos , Saccharomyces cerevisiae/genética , Replicação do DNA , Escherichia coli/genética , Edição de Genes , Oligonucleotídeos/química
2.
Angew Chem Int Ed Engl ; 55(38): 11412-6, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27527591

RESUMO

Mechanically interlocked supramolecular assemblies are appealing building blocks for creating functional nanodevices. Herein, we describe the multistep assembly of large DNA origami rotaxanes that are capable of programmable structural switching. We validated the topology and structural integrity of these rotaxanes by analyzing the intermediate and final products of various assembly routes by electrophoresis and electron microscopy. We further analyzed two structure-switching behaviors of our rotaxanes, which are both mediated by DNA hybridization. In the first mechanism, the translational motion of the macrocycle can be triggered or halted at either terminus. In the second mechanism, the macrocycle can be elongated after completion of the rotaxane assembly, giving rise to a unique structure that is otherwise difficult to access.


Assuntos
DNA/química , Rotaxanos/química , Compostos Macrocíclicos/química , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...