Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767980

RESUMO

In this study, we investigate the coexistence of short- and long-term memory effects owing to the programmable retention characteristics of a two-dimensional Au/MoS2/Au atomristor device and determine the impact of these effects on synaptic properties. This device is constructed using bilayer MoS2 in a crossbar structure. The presence of both short- and long-term memory characteristics is proposed by using a filament model within the bilayer transition-metal dichalcogenide. Short- and long-term properties are validated based on programmable multilevel retention tests. Moreover, we confirm various synaptic characteristics of the device, demonstrating its potential use as a synaptic device in a neuromorphic system. Excitatory postsynaptic current, paired-pulse facilitation, spike-rate-dependent plasticity, and spike-number-dependent plasticity synaptic applications are implemented by operating the device at a low-conductance level. Furthermore, long-term potentiation and depression exhibit symmetrical properties at high-conductance levels. Synaptic learning and forgetting characteristics are emulated using programmable retention properties and composite synaptic plasticity. The learning process of artificial neural networks is used to achieve high pattern recognition accuracy, thereby demonstrating the suitability of the use of the device in a neuromorphic system. Finally, the device is used as a physical reservoir with time-dependent inputs to realize reservoir computing by using short-term memory properties. Our study reveals that the proposed device can be applied in artificial intelligence-based computing applications by utilizing its programmable retention properties.

2.
Physiol Meas ; 45(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38599226

RESUMO

Objective.Making up one of the largest shares of diagnosed cancers worldwide, skin cancer is also one of the most treatable. However, this is contingent upon early diagnosis and correct skin cancer-type differentiation. Currently, methods for early detection that are accurate, rapid, and non-invasive are limited. However, literature demonstrating the impedance differences between benign and malignant skin cancers, as well as between different types of skin cancer, show that methods based on impedance differentiation may be promising.Approach.In this work, we propose a novel approach to rapid and non-invasive skin cancer diagnosis that leverages the technologies of difference-based electrical impedance tomography (EIT) and graphene electronic tattoos (GETs).Main results.We demonstrate the feasibility of this first-of-its-kind system using both computational numerical and experimental skin phantom models. We considered variations in skin cancer lesion impedance, size, shape, and position relative to the electrodes and evaluated the impact of using individual and multi-electrode GET (mGET) arrays. The results demonstrate that this approach has the potential to differentiate based on lesion impedance, size, and position, but additional techniques are needed to determine shape.Significance.In this way, the system proposed in this work, which combines both EIT and GET technology, exhibits potential as an entirely non-invasive and rapid approach to skin cancer diagnosis.


Assuntos
Impedância Elétrica , Grafite , Imagens de Fantasmas , Neoplasias Cutâneas , Tomografia , Grafite/química , Tomografia/instrumentação , Tomografia/métodos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/diagnóstico por imagem , Humanos , Eletrodos , Tatuagem
3.
Nanoscale Horiz ; 9(5): 853-862, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38505960

RESUMO

We investigated diffusion memristors in the structure of Ag/Ta2O5/HfO2/Pt, in which active Ag ions control active metal ion diffusion and mimic biological brain functions. The CMOS compatible high-k metal oxide could control an Ag electrode that was ionized by applying an appropriate voltage to form a conductive filament, and the movement of Ag ions was chemically and electrically controlled due to oxygen density. This diffusion memristor exhibited diffused characteristics with a selectivity of 109, and achieved a low power consumption of 2 mW at a SET voltage of 0.2 V. The threshold transitions were reliably repeatable over 20 cycles for compliance currents of 10-6 A, 10-4 A, and no compliance current, with the largest standard deviation value of SET variation being 0.028. Upon filament formation, Ag ions readily diffused into the interface of the Ta2O5 and HfO2 layer, which was verified by investigating the Ag atomic percentage using XPS and vertical EDX and by measuring the relaxation time of 0.8 ms. Verified volatile switching device demonstrated the biological synaptic properties of quantum conductance, short-term memory, and long-term memory due to controlling the Ag. Diffusion memristors using designed control and switching layers as following film density and oxygen vacancy have improved results as low-power devices and neuromorphic devices compared to other diffusion-based devices, and these properties can be used for various applications such as selectors, synapses, and neuromorphic devices.

4.
Res Sq ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260621

RESUMO

C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C-C coupling mediated by 2D TMDCs to promote C-H activation. Our results shed light on 2D materials for C-H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials.

5.
ACS Nano ; 18(4): 3313-3322, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38226861

RESUMO

Recently, we demonstrated the nonvolatile resistive switching effects of metal-insulator-metal (MIM) atomristor structures based on two-dimensional (2D) monolayers. However, there are many remaining combinations between 2D monolayers and metal electrodes; hence, there is a need to further explore 2D resistance switching devices from material selections to future perspectives. This study investigated the volatile and nonvolatile switching coexistence of monolayer hexagonal boron nitride (h-BN) atomristors using top and bottom silver (Ag) metal electrodes. Utilizing an h-BN monolayer and Ag electrodes, we found that the transition between volatile and nonvolatile switching is attributed to the thickness/stiffness of chain-like conductive bridges between h-BN and Ag surfaces based on the current compliance and atomristor area. Computations indicate a "weak" bridge is responsible for volatile switching, while a "strong" bridge is formed for nonvolatile switching. The current compliance determines the number of Ag atoms that undergo dissociation at the electrode, while the atomristor area determines the degree of electric field localization that forms more stable conductive bridges. The findings of this study suggest that the h-BN atomristor using Ag electrodes shows promise as a potential solution to integrate both volatile neurons and nonvolatile synapses in a single neuromorphic crossbar array structure through electrical and dimensional designs.

6.
Nano Lett ; 24(8): 2473-2480, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38252466

RESUMO

Two-dimensional materials (2DMs) have gained significant interest for resistive-switching memory toward neuromorphic and in-memory computing (IMC). To achieve atomic-level miniaturization, we introduce vertical hexagonal boron nitride (h-BN) memristors with graphene edge contacts. In addition to enabling three-dimensional (3D) integration (i.e., vertical stacking) for ultimate scalability, the proposed structure delivers ultralow power by isolating single conductive nanofilaments (CNFs) in ultrasmall active areas with negligible leakage thanks to atomically thin (∼0.3 nm) graphene edge contacts. Moreover, it facilitates studying fundamental resistive-switching behavior of single CNFs in CVD-grown 2DMs that was previously unattainable with planar devices. This way, we studied their programming characteristics and observed a consistent single quantum step in conductance attributed to unique atomically constrained nanofilament behavior in CVD-grown 2DMs. This resistive-switching property was previously suggested for h-BN memristors and linked to potential improvements in stability (robustness of CNFs), and now we show experimental evidence including superior retention of quantized conductance.

7.
Nano Lett ; 24(6): 1891-1900, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38150559

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are highly promising as field-effect transistor (FET) channels in the atomic-scale limit. However, accomplishing this superiority in scaled-up FETs remains challenging due to their van der Waals (vdW) bonding nature with respect to conventional metal electrodes. Herein, we report a scalable approach to fabricate centimeter-scale all-2D FET arrays of platinum diselenide (PtSe2) with in-plane platinum ditelluride (PtTe2) edge contacts, mitigating the aforementioned challenges. We realized a reversible transition between semiconducting PtSe2 and metallic PtTe2 via a low-temperature anion exchange reaction compatible with the back-end-of-line (BEOL) processes. All-2D PtSe2 FETs seamlessly edge-contacted with transited metallic PtTe2 exhibited significant performance improvements compared to those with surface-contacted gold electrodes, e.g., an increase of carrier mobility and on/off ratio by over an order of magnitude, achieving a maximum hole mobility of ∼50.30 cm2 V-1 s-1 at room temperature. This study opens up new opportunities toward atomically thin 2D-TMD-based circuitries with extraordinary functionalities.

8.
ACS Appl Mater Interfaces ; 15(51): 59358-59369, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38103256

RESUMO

Hydrogen fuel cells based on proton exchange membrane fuel cell (PEMFC) technology are promising as a source of clean energy to power a decarbonized future. However, PEMFCs are limited by a number of major inefficiencies; one of the most significant is hydrogen crossover. In this work, we comprehensively study the effects of two-dimensional (2D) materials applied to the anode side of the membrane as H2 barrier coatings on Nafion to reduce crossover effects on hydrogen fuel cells, while studying adverse effects on conductivity and catalyst performance in the beginning of life testing. The barrier layers studied include graphene, hexagonal boron nitride (hBN), amorphous boron nitride (aBN), and varying thicknesses of molybdenum disulfide (MoS2), all chosen due to their expected stability in a fuel cell environment. Crossover mitigation in the materials studied ranges from 4.4% (1 nm MoS2) to 46.1% (graphene) as compared to Nafion 211. Effects on proton conductivity are also studied, suggesting high areal proton transport in materials previously thought to be effectively nonconductive, such as 2 nm MoS2 and amorphous boron nitride under the conditions studied. The results indicate that a number of 2D materials are able to improve crossover effects, with those coated with 8 nm MoS2 and 1 L graphene able to achieve greater crossover reduction while minimizing conductivity penalty.

9.
ACS Nano ; 17(18): 18629-18640, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37703454

RESUMO

The SARS-CoV-2 pandemic has highlighted the need for devices capable of carrying out rapid differential detection of viruses that may manifest similar physiological symptoms yet demand tailored treatment plans. Seasonal influenza may be exacerbated by COVID-19 infections, increasing the burden on healthcare systems. In this work, we demonstrate a technology based on liquid-gated graphene field-effect transistors (GFETs), for rapid and ultraprecise sensing and differentiation of influenza and SARS-CoV-2 surface protein. Most distinctively, the device consists of 4 onboard GFETs arranged in a quadruple architecture, where each quarter is functionalized individually (with either antibodies or chemically passivated control) but measured jointly. The sensor platform was tested against a range of concentrations of viral surface proteins from both viruses with the lowest tested and detected concentration at ∼50 ag/mL, or 88 zM for COVID-19 and 227 zM for Flu, which is 5-fold lower than the values reported previously on a similar platform. Unlike the classic real-time polymerase chain reaction test, which has a turnaround time of a few hours, the graphene technology presents an ultrafast response time of ∼10 s even in complex and clinically relevant media such as saliva. Thus, we have developed a multianalyte, highly sensitive, and fault-tolerant technology for rapid diagnostic of contemporary, emerging, and future pandemics.


Assuntos
COVID-19 , Grafite , Influenza Humana , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Anticorpos
10.
ACS Nano ; 17(13): 12798-12808, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37377371

RESUMO

Ambipolar dual-gate transistors based on low-dimensional materials, such as graphene, carbon nanotubes, black phosphorus, and certain transition metal dichalcogenides (TMDs), enable reconfigurable logic circuits with a suppressed off-state current. These circuits achieve the same logical output as complementary metal-oxide semiconductor (CMOS) with fewer transistors and offer greater flexibility in design. The primary challenge lies in the cascadability and power consumption of these logic gates with static CMOS-like connections. In this article, high-performance ambipolar dual-gate transistors based on tungsten diselenide (WSe2) are fabricated. A high on-off ratio of 108 and 106, a low off-state current of 100 to 300 fA, a negligible hysteresis, and an ideal subthreshold swing of 62 and 63 mV/dec are measured in the p- and n-type transport, respectively. We demonstrate cascadable and cascaded logic gates using ambipolar TMD transistors with minimal static power consumption, including inverters, XOR, NAND, NOR, and buffers made by cascaded inverters. A thorough study of both the control gate and the polarity gate behavior is conducted. The noise margin of the logic gates is measured and analyzed. The large noise margin enables the implementation of VT-drop circuits, a type of logic with reduced transistor number and simplified circuit design. Finally, the speed performance of the VT-drop and other circuits built by dual-gate devices is qualitatively analyzed. This work makes advancements in the field of ambipolar dual-gate TMD transistors, showing their potential for low-power, high-speed, and more flexible logic circuits.

11.
ACS Nano ; 17(11): 9694-9747, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37219929

RESUMO

Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.

12.
ACS Appl Mater Interfaces ; 15(12): 16308-16316, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36939015

RESUMO

Two-dimensional (2D) materials have been studied as an emerging class of nanomaterials owing to their attractive properties in nearly every field of science and technology. Molybdenum disulfide (MoS2) is one of the more promising candidates of these atomically thin 2D materials for its technological potential. The facile synthesis of MoS2 remains a matter of broad interest. In this study, MoS2 was synthesized by chemical vapor deposition sulfurization at various temperatures (550 °C, 650 °C, and 750 °C) of either precursor molybdenum metal (Mo) or molybdenum trioxide (MoO3) deposited on silicon/silicon dioxide (Si/SiO2) via e-beam evaporation. Monolayer, bilayer, and few layers sulfurized samples have been grown and verified by Raman, photoluminescence spectroscopy, XRD, XPS, and AFM. MoO3 sulfurization provided monolayer growth in comparison to Mo sulfurization under the same conditions and precursor thicknesses. Optical microscopy showed the homogeneous nature of grown samples. A main finding of this work is that MoO3 sulfurization produced higher quality MoS2 as compared to those grown by an Mo precursor. Device characteristics based on monolayer MoO3 sulfurized MoS2-x include nonvolatile resistive switching with Ion/Ioff ≈ 104 at a relatively low operating bias of ±1 V. In addition, field-effect transistor characteristics revealed p-type material growth with a carrier mobility ∼ 41 cm2 V-1 s-1, which is in contrast to typically observed n-type characteristics.

13.
Nanoscale ; 15(14): 6853-6863, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36961453

RESUMO

1/f noise is a critical figure of merit for the performance of transistors and circuits. For two-dimensional devices (2D-FETs), and especially for applications in the GHz range where short-channel FETs are required, the velocity saturation (VS) effect can result in the reduction of 1/f noise at high longitudinal electric fields. A new physics-based compact model has been for the first time introduced for single- to few-layer 2D-FETs in this study, precisely validating 1/f noise experiments for various types of devices. The proposed model mainly accounts for the measured 1/f noise bias dependence as the latter is defined by different physical mechanisms. Thus, analytical expressions are derived, valid in all regions of operation in contrast to conventional approaches available in the literature so far, accounting for carrier number fluctuation (ΔN), mobility fluctuation (Δµ) and contact resistance (ΔR) effects based on the underlying physics that rules these devices. The ΔN mechanism due to trapping/detrapping together with an intense Coulomb scattering effect dominates the 1/f noise from the medium to the strong accumulation region while Δµ has also been demonstrated to modestly contribute in the subthreshold region. ΔR can also be significant in a very high carrier density. The VS induced reduction of 1/f noise measurements at high electric fields was also remarkably captured by the model. The physical validity of the model can also assist in extracting credible conclusions when conducting comparisons between experimental data from devices with different materials or dielectrics.

14.
Adv Mater ; 35(22): e2212190, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965107

RESUMO

Heart rhythm disorders, known as arrhythmias, cause significant morbidity and are one of the leading causes of mortality. Cardiac arrhythmias are frequently treated by implantable devices, such as pacemakers and defibrillators, or by ablation therapy guided by electroanatomical mapping. Both implantable and ablation therapies require sophisticated biointerfaces for electrophysiological measurements of electrograms and delivery of therapeutic stimulation or ablation energy. In this work, a graphene biointerface for in vivo cardiac electrophysiology is reported for the first time. Leveraging sub-micrometer-thick tissue-conformable graphene arrays, sensing and stimulation of the open mammalian heart are demonstrated both in vitro and in vivo. Furthermore, the graphene biointerface treatment of atrioventricular block (the kind of arrhythmia where the electrical conduction from the atria to the ventricles is interrupted) is demonstrated. The graphene arrays show effective electrochemical properties, namely interface impedance down to 40 Ω cm2 at 1 kHz, charge storage capacity up to 63.7 mC cm-2 , and charge injection capacity up to 704 µC cm-2 . Transparency of the graphene structures allows for simultaneous optical mapping of cardiac action potentials, calcium transients, and optogenetic stimulation while performing electrical measurements and stimulation. The report presents evidence of the significant potential of graphene biointerfaces for advanced cardiac electrophysiology and arrhythmia therapy.


Assuntos
Grafite , Animais , Humanos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/terapia , Coração , Ventrículos do Coração , Mamíferos
15.
ACS Nano ; 17(6): 5211-5295, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36892156

RESUMO

Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Qualidade de Vida
17.
Nano Lett ; 23(4): 1152-1158, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36662611

RESUMO

Recently, nonvolatile resistive switching memory effects have been actively studied in two-dimensional (2D) transition metal dichalcogenides and boron nitrides to advance future memory and neuromorphic computing applications. Here, we report on radiofrequency (RF) switches utilizing hexagonal boron nitride (h-BN) memristors that afford operation in the millimeter-wave (mmWave) range. Notably, silver (Ag) electrodes to h-BN offer outstanding nonvolatile bipolar resistive switching characteristics with a high ON/OFF switching ratio of 1011 and low switching voltage below 0.34 V. In addition, the switch exhibits a low insertion loss of 0.50 dB and high isolation of 23 dB across the D-band spectrum (110 to 170 GHz). Furthermore, the S21 insertion loss can be tuned through five orders of current compliance magnitude, which increases the application prospects for atomic switches. These results can enable the switch to become a key component for future reconfigurable wireless and 6G communication systems.

18.
Biosens Bioelectron ; 222: 114993, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525710

RESUMO

The organized self-assembly of conductive biological structures holds promise for creating new bioelectronic devices. In particular, Geobacter sulfurreducens type IVa pili have proven to be a versatile material for fabricating protein nanowire-based devices. To scale the production of conductive pili, we designed a strain of Shewanella oneidensis that heterologously expressed abundant, conductive Geobacter pili when grown aerobically in liquid culture. S. oneidensis expressing a cysteine-modified pilin, designed to enhance the capability to bind to gold, generated conductive pili that self-assembled into biohybrid filaments in the presence of gold nanoparticles. Elemental composition analysis confirmed the filament-metal interactions within the structures, which were several orders of magnitude larger than previously described metal:organic filaments. The results demonstrate that the S. oneidensis chassis significantly advances the possibilities for facile conductive protein nanowire design and fabrication.


Assuntos
Técnicas Biossensoriais , Geobacter , Nanopartículas Metálicas , Ouro , Fímbrias Bacterianas/metabolismo , Transporte de Elétrons
19.
ACS Appl Mater Interfaces ; 14(41): 46841-46849, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36195978

RESUMO

Excitonic properties in 2D heterobilayers are closely governed by charge transfer (CT) and excitonic energy transfer (ET) at van der Waals interfaces. Various means have been employed to modulate the interlayer CT and ET, including electrical gating and modifying interlayer spacing, but with limited extent in their controllability. Here, we report a novel method to modulate these transfers in the MoS2/WS2 heterobilayer by applying compressive strain under hydrostatic pressure. Raman and photoluminescence measurements, combined with density functional theory calculations, show pressure-enhanced interlayer interaction of the heterobilayer. Heterobilayer-to-monolayer photoluminescence intensity ratio (η) of WS2 decreases by five times up to ≈4 GPa, suggesting enhanced ET, whereas it increases by an order of magnitude at higher pressures and reaches almost unity. Theoretical calculations show that orbital switching and charge transfers in the heterobilayer's hybridized conduction band are responsible for the non-monotonic modulation of the transfers. Our findings provide a compelling approach toward effective mechanical control of CT and ET in 2D excitonic devices.

20.
RSC Adv ; 12(38): 24571-24578, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36128398

RESUMO

Two-dimensional (2D) multiferroics are key candidate materials towards advancement of smart technology. Here, we employed a simple synthesis approach to address the long-awaited dream of developing ferroelectric and multiferroic 2D materials, especially in the new class of materials called MXenes. The etched Ti3C2T x MXene was first synthesized after HF-treatment followed by a delamination process for successful synthesis of free-standing Ti3C2T x film. The free-standing film was then exposed to air at room-temperature and heated at different temperatures to form a TiO2 layer derived from the Ti3C2T x MXene itself. The ferroelectric measurement showed a clear polarization hysteresis loop at room-temperature. Also, due to the reported ferromagnetic behavior of Ti3C2T x MXene, our composite could show multiferroic properties at room-temperature. The magnetoelectric coupling test was also performed that showed a clear, switchable spontaneous polarization under applied magnetic field. TiO2 is reported to be an incipient ferroelectric that assumes a ferroelectric phase in composite form. The structural and morphological analysis confirmed successful synthesis of free-standing film and the Raman spectroscopy revealed the formation of different phases of TiO2 and the observed ferroelectricity could be due to structural deformation as a result of the formation of this new phase. The measured value of remanent polarization is 0.5 µC cm-2. This is the first report on the existence of a ferroelectric phase and multiferroic coupling in 2D free-standing MXene film at room-temperature which opens-up the possibility of 2D material-based electric and magnetic data storage applications at room-temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...