Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082615

RESUMO

Visualization of endovascular tools like guidewire and catheter is essential for procedural success of endovascular interventions. This requires tracking the tool pixels and motion during catheterization; however, detecting the endpoints of the endovascular tools is challenging due to their small size, thin appearance, and flexibility. As this still limit the performances of existing methods used for endovascular tool segmentation, predicting correct object location could provide ways forward. In this paper, we proposed a neighborhood-based method for detecting guidewire endpoints in X-ray angiograms. Typically, it consists of pixel-level segmentation and a post-segmentation step that is based on adjacency relationships of pixels in a given neighborhood. The latter includes skeletonization to predict endpoint pixels of guidewire. The method is evaluated with proprietary guidewire dataset obtained during in-vivo study in six rabbits, and it shows a high segmentation performance characterized with precision of 87.87% and recall of 90.53%, and low detection error with a mean pixel error of 2.26±0.14 pixels. We compared our method with four state-of-the-art detection methods and found it to exhibit the best detection performance. This neighborhood-based detection method can be generalized for other surgical tool detection and in related computer vision tasks.Clinical Relevance- The proposed method can be provided with better tool tracking and visualization systems during robot-assisted intravascular interventional surgery.


Assuntos
Procedimentos Endovasculares , Robótica , Coelhos , Animais , Cateterismo , Catéteres , Procedimentos Endovasculares/métodos , Angiografia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38082889

RESUMO

Robot-assisted catheterization is routinely carried out for intervention of cardiovascular diseases. Meanwhile, the success of endovascular tool navigation depends on visualization and tracking cues available in the robotic platform. Currently, real-time motion analytics are lacking, while poor illumination during fluoroscopy affects existing physics- and learning-based methods used for tool segmentation. A multi-lateral branched network (MLB-Net) is herein proposed for tool segmentation in cardiovascular angiograms. The model has an encoder with multi-lateral separable convolutions and a pyramid decoder. Model training and validation are done on 1320 angiograms obtained during robot-assisted catheterization in rabbit. Model performance, explained with F1-score of 89.01% and mean intersection-over-union of 90.05% on 330 frames, indicates the model's robustness for guidewire segmentation in angiograms. The MLB-Net offers better performance than the state-of-the-art segmentation models such as U-Net, U-Net++ and DeepLabV3. Thus, it could provide basis for endovascular tool tracking and surgical scene analytics during cardiovascular interventions.


Assuntos
Doenças Cardiovasculares , Robótica , Animais , Coelhos , Angiografia , Sinais (Psicologia) , Cateterismo
3.
Int Immunopharmacol ; 90: 107228, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33302035

RESUMO

The disease caused by viral pneumonia called severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) declared by the World Health Organization is a global pandemic that the world has witnessed since the last Ebola epidemic, SARS and MERS viruses. Many chemical compounds with antiviral activity are currently undergoing clinical investigation in order to find treatments for SARS-CoV-2 infected patients. On-going drug-drug interaction examinations on new, existing, and repurposed antiviral drugs are yet to provide adequate safety, toxicological, and effective monitoring protocols. This review presents an overview of direct and indirect antiviral drugs, antibiotics, and immune-stimulants used in the management of SARS-CoV-2. It also seeks to outline the recent development of drugs with anti-coronavirus effects; their mono and combination therapy in managing the disease vis-à-vis their biological sources and chemistry. Co-administration of these drugs and their interactions were discussed to provide significant insight into how adequate monitoring of patients towards effective health management could be achieved.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Humanos , Risco
4.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003491

RESUMO

Recently, flexible tactile sensors based on three-dimensional (3D) porous conductive composites, endowed with high sensitivity, a wide sensing range, fast response, and the capability to detect low pressures, have aroused considerable attention. These sensors have been employed in different practical domain areas such as artificial skin, healthcare systems, and human-machine interaction. In this study, a facile, cost-efficient method is proposed for fabricating a highly sensitive piezoresistive tactile sensor based on a 3D porous dielectric layer. The proposed sensor is designed with a simple dip-coating homogeneous synergetic conductive network of carbon black (CB) and multi-walled carbon nanotube (MWCNTs) composite on polydimethysiloxane (PDMS) sponge skeletons. The unique combination of a 3D porous structure, with hybrid conductive networks of CB/MWCNTs displayed a superior elasticity, with outstanding electrical characterization under external compression. The piezoresistive tactile sensor exhibited a high sensitivity of (15 kPa-1), with a rapid response time (100 ms), the capability of detecting both large and small compressive strains, as well as excellent mechanical deformability and stability over 1000 cycles. Benefiting from a long-term stability, fast response, and low-detection limit, the piezoresistive sensor was successfully utilized in monitoring human physiological signals, including finger heart rate, pulses, knee bending, respiration, and finger grabbing motions during the process of picking up an object. Furthermore, a comprehensive performance of the sensor was carried out, and the sensor's design fulfilled vital evaluation metrics, such as low-cost and simplicity in the fabrication process. Thus, 3D porous-based piezoresistive tactile sensors could rapidly promote the development of high-performance flexible sensors, and make them very attractive for an enormous range of potential applications in healthcare devices, wearable electronics, and intelligent robotic systems.

5.
Micromachines (Basel) ; 11(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272641

RESUMO

Success of the da Vinci surgical robot in the last decade has motivated the development of flexible access robots to assist clinical experts during single-port interventions of core intrabody organs. Prototypes of flexible robots have been proposed to enhance surgical tasks, such as suturing, tumor resection, and radiosurgery in human abdominal areas; nonetheless, precise constraint control models are still needed for flexible pathway navigation. In this paper, the design of a flexible snake-like robot is presented, along with the constraints model that was proposed for kinematics and dynamics control, motion trajectory planning, and obstacle avoidance during motion. Simulation of the robot and implementation of the proposed control models were done in Matlab. Several points on different circular paths were used for evaluation, and the results obtained show the model had a mean kinematic error of 0.37 ± 0.36 mm with very fast kinematics and dynamics resolution times. Furthermore, the robot's movement was geometrically and parametrically continuous for three different trajectory cases on a circular pathway. In addition, procedures for dynamic constraint and obstacle collision detection were also proposed and validated. In the latter, a collision-avoidance scheme was kept optimal by keeping a safe distance between the robot's links and obstacles in the workspace. Analyses of the results showed the control system was optimal in determining the necessary joint angles to reach a given target point, and motion profiles with a smooth trajectory was guaranteed, while collision with obstacles were detected a priori and avoided in close to real-time. Furthermore, the complexity and computational effort of the algorithmic models were negligibly small. Thus, the model can be used to enhance the real-time control of flexible robotic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...