Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(34): 38631-38641, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35979724

RESUMO

Electron transporting layer (ETL)-free perovskite solar cells (PSCs) exhibit promising progress in photovoltaic devices due to the elimination of the complex and energy-/time-consuming preparation route of ETLs. However, the performance of ETL-free devices still lags behind conventional devices because of mismatched energy levels and undesired interfacial charge recombination. In this study, we introduce sodium fluoride (NaF) as an interface layer in ETL-free PSCs to align the energy level between the perovskite and the FTO electrode. KPFM measurements clearly show that the NaF layer covers the surface of rough underlying FTO very well. This interface modification reduces the work function of FTO by forming an interfacial dipole layer, leading to band bending at the FTO/perovskite interface, which facilitates an effective electron carrier collection. Besides, the part of Na+ ions is found to be able to migrate into the absorber layer, facilitating enlarged grains and spontaneous passivation of the perovskite layer. As a result, the efficiency of the NaF-treated cell reaches 20%, comparable to those of state-of-the-art ETL-based cells. Moreover, this strategy effectively enhances the operational stability of devices by preserving 94% of the initial efficiency after storage for 500 h under continuous light soaking at 55 °C. Overall, these improvements in photovoltaic properties are clear indicators of enhanced interface passivation by NaF-based interface engineering.

2.
J Phys Chem Lett ; 12(3): 997-1004, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33470117

RESUMO

Defect states at surfaces and grain boundaries as well as poor anchoring of perovskite grains hinder the charge transport ability by acting as nonradiative recombination centers, thus resulting in undesirable phenomena such as low efficiency, poor stability, and hysteresis in perovskite solar cells (PSCs). Herein, a linear dicarboxylic acid-based passivation molecule, namely, glutaric acid (GA), is introduced by a facile antisolvent additive engineering (AAE) strategy to concurrently improve the efficiency and long-term stability of the ensuing PSCs. Thanks to the two-sided carboxyl (-COOH) groups, the strong interactions between GA and under-coordinated Pb2+ sites induce the crystal growth, improve the electronic properties, and minimize the charge recombination. Ultimately, champion-stabilized efficiency approaching 22% is achieved with negligible hysteresis for GA-assisted devices. In addition to the enhanced moisture stability of the devices, considerable operational stability is achieved after 2400 h of aging under continuous illumination at maximum power point (MPP) tracking.

3.
ChemSusChem ; 14(4): 1176-1183, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352009

RESUMO

Perovskite solar cells (PSCs) have shown great promise for photovoltaic applications, owing to their low-cost assembly, exceptional performance, and low-temperature solution processing. However, the advancement of PSCs towards commercialization requires improvements in efficiency and long-term stability. The surface and grain boundaries of perovskite layer, as well as interfaces, are critical factors in determining the performance of the assembled cells. Defects, which are mainly located at perovskite surfaces, can trigger hysteresis, carrier recombination, and degradation, which diminish the power conversion efficiencies (PCEs) of the resultant cells. This study concerns the stabilization of the α-FAPbI3 perovskite phase without negatively affecting the spectral features by using 2,3,4,5,6-pentafluorobenzyl phosphonic acid (PFBPA) as a passivation agent. Accordingly, high-quality PSCs are attained with an improved PCE of 22.25 % and respectable cell parameters compared to the pristine cells without the passivation layer. The thin PFBPA passivation layer effectively protects the perovskite layer from moisture, resulting in better long-term stability for unsealed PSCs, which maintain >90 % of the original efficiency under different humidity levels (40-75 %) after 600 h. PFBPA passivation is found to have a considerable impact in obtaining high-quality and stable FAPbI3 films to benefit both the efficiency and the stability of PSCs.

4.
Adv Mater ; 33(2): e2006087, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33289215

RESUMO

The failure of perovskite solar cells (PSCs) to maintain their maximum efficiency over a prolonged time is due to the deterioration of the light harvesting material under environmental factors such as humidity, heat, and light. Systematically elucidating and eliminating such degradation pathways are critical to imminent commercial use of this technology. Here, a straightforward approach is introduced to reduce the level of defect-states present at the perovskite and hole transporting layer interface by treating the various perovskite surfaces with poly(N,N'-bis-4-butylphenyl-N,N'-bisphenyl)benzidine (polyTPD) molecules. This strategy significantly suppresses the defect-mediated non-radiative recombination in the ensuing devices and prevents the penetration of degrading agents into the inner layers by passivating the perovskite surface and grain boundaries. Suppressed non-radiative recombination and improved interfacial hole extraction result in PSCs with stabilized efficiency exceeding 21% with negligible hysteresis (≈19.1% for control device). Moreover, ultra-hydrophobic polyTPD passivant considerably alleviates moisture penetration, showing ≈91% retention of initial efficiencies after 300 h storage at high relative humidity of 80%. Similarly, passivated device retains 94% of its initial efficiency after 800 h under operational conditions (maximum power point tracking under continuous illumination at 60 °C). In addition to interfacial passivation function, hole-selective role of dopant-free polyTPD is also evaluated and discussed in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...