Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 9(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36290501

RESUMO

Waste resources are an attractive option for economical the production of biodiesel; however, oil derived from waste resource contains free fatty acids (FFA). The concentration of FFAs must be reduced to below 1 wt.% before it can be converted to biodiesel using transesterification. FFAs are converted to fatty acid methyl esters (FAMEs) using acid catalysis, which is the rate-limiting reaction (~4000 times slower than transesterification), with a low conversion as well, in the over biodiesel production process. The study is focused on synthesizing and using a bifunctional catalyst (7% Sr/ZrO2) to carry out esterification and transesterification simultaneously to convert waste cooking oil (WCO) into biodiesel using microbubble-mediated mass transfer technology. The results reveal that a higher conversion of 85% is achieved in 20 min using 7% Sr/ZrO2 for biodiesel production. A comprehensive kinetic model is developed for the conversion of WCO in the presence of a 7% Sr/ZrO2 catalyst. The model indicates that the current reaction is pseudo-first-order, controlled by the vapor-liquid interface, which also indicates the complex role of microbubble interfaces due to the presence of the bifunctional catalyst. The catalyst could be recycled seven times, indicating its high stability during biodiesel production. The heterogeneous bifunctional catalyst is integrated with microbubble-mediated mass transfer technology for the first time. The results are unprecedented; furthermore, this study might be the first to use microbubble interfaces to "host" bifunctional metallic catalysts. The resulting one-step process of esterification and transesterification makes the process less energy-intensive and more cost-efficient, while also reducing process complexity.

2.
Int J Biol Macromol ; 202: 177-190, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35033532

RESUMO

Chitosan (Cs) based biomaterials seem to be indispensable for neovasculogenesis and angiogenesis that ensure accelerated wound healing. Cs/poly (vinyl alcohol) (PVA) bio-constructs were cross-linked and investigated with varying concentrations of aminopropyltriethoxysilane (APTES). This study comprised of three phases: fabrication of hydrogels, characterization, assessment of angiogenic potential along with toxico-pathological effects, wound healing efficacy in chick and mice, respectively. The hydrogels were characterized by FTIR, SEM and TGA and the swelling response was examined in different solvents. The hydrogels swelling ratio was decreased with increasing amount of APTES, showed the highest swelling at acidic and basic pH while low swelling at neutral pH. Chorioallantoic membranes (CAM) assay was performed to study in-vivo angiogenesis, toxicological, morphological, biochemical and histological analyses in developing chicks. The results showed remarkably improved angiogenesis with little deviations in morphological, histological features and liver enzymes of chick embryos at higher concentrations of APTES. Besides, full thickness wounds were excised on mice dorsolateral skin to assess the wound healing. The rate of wound size reduction was significantly higher after topical application of hydrogels with elevated levels of crosslinker. Hence, the hydrogels showed enhanced angiogenesis, accelerated wound healing with little or no observable in-vivo toxicity.


Assuntos
Quitosana , Animais , Embrião de Galinha , Quitosana/química , Quitosana/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Propilaminas , Silanos , Cicatrização
3.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668995

RESUMO

Chitosan and polyethylene glycol (PEG-600) membranes were synthesized and crosslinked with 3-aminopropyltriethoxysilane (APTES). The main purpose of this research work is to synthesize RO membranes which can be used to provide desalinated water for drinking, industrial and agricultural purposes. Hydrogen bonding between chitosan and PEG was confirmed by displacement of the hydroxyl absorption peak at 3237 cm-1 in pure chitosan to lower values in crosslinked membranes by using FTIR. Dynamic mechanical analysis revealed that PEG lowers Tg of the modified membranes vs. pure chitosan from 128.5 °C in control to 120 °C in CS-PEG5. SEM results highlighted porous and anisotropic structure of crosslinked membranes. As the amount of PEG was increased, hydrophilicity of membranes was increased and water absorption increased up to a maximum of 67.34%. Permeation data showed that flux and salt rejection value of the modified membranes was increased up to a maximum of 80% and 40.4%, respectively. Modified films have antibacterial properties against Escherichia coli as compared to control membranes.


Assuntos
Quitosana/química , Filtração/métodos , Membranas Artificiais , Polietilenoglicóis/química , Propilaminas/química , Silanos/química , Antibacterianos/farmacologia , Reagentes de Ligações Cruzadas/química , Escherichia coli/efeitos dos fármacos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Osmose , Permeabilidade , Polímeros/química , Polímeros/farmacologia , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...