Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 185: 664-678, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34224755

RESUMO

Nowadays, the targeted imaging probe and drug delivery systems are the novel breakthrough area in the nanomedicine and treatment of various diseases. Conjugation of monoclonal antibodies and their fragments on nanoparticles (NPs) have a remarkable impact on personalized medicine, such that it provides specific internalization and accumulation in the tumor microenvironment. Targeted imaging and early detection of cancer is presumably the strong participant to a diminution in mortality and recurrence of cancer disease that will be the next generation of the imaging device in clinical application. These intelligent delivery systems can deliver therapeutic agents that target cancerous tissue with minimal side effects and a wide therapeutic window. Overall, the linkage between the antibody and NPs is a critical subject and requires precise design and development. The attachment of antibody nanoconjugates (Ab-NCs) on the antigen surface shouldn't affect the function of the antibody-antigen binding. Also, the stability of the antibody nanoconjugates in blood circulation is concerned to avoid the release of drug in non-targeted regions and the possible for specific toxicity while disposal to the desired site. Here, we update the recent progress of Ab-NCs to improve early detection and cancer therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Biomarcadores Tumorais/imunologia , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Detecção Precoce de Câncer , Humanos , Nanoconjugados , Neoplasias/imunologia , Patologia Molecular , Medicina de Precisão , Microambiente Tumoral/efeitos dos fármacos
2.
Colloids Surf B Biointerfaces ; 205: 111892, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34107443

RESUMO

The application of nanoparticles-loaded hydrogel as a novel formulation has gotten much attention for a potential drug delivery method for desire drug controlling and targeting. This study prepared a sustained release formulation using dexamethasone sodium phosphate-loaded chitosan nanoparticles embedded in silk fibroin hydrogel. Dexamethasone sodium phosphate-loaded chitosan nanoparticles (DEX-CSNPs) was developed using the ionotropic-gelation technique and inserted in the silk fibroin hydrogel (SFH). Mean particle size, polydispersity index (PDI), and zeta potential of DEX-CSNPs were 488.05±38.69 nm, 0.15±0.07, 32.12±2.42 mV, respectively. The encapsulation efficiency (EE), drug loading capacity (LC), and the cumulative amount of released drug of DEX-loaded CSNPs, which detected in phosphate buffer saline (PBS) solution, were 67.6±6.7%, 15.7±5.7%, and 75.84%, respectively. The DEX-CSNPs were then mixed with silk fibroin (SF) solution and induced gelation by sonication to prepare a drug-releasing system. As a result, the scanning electron microscopy (SEM) image shows that the prepared drug delivery system had a properly interconnected porous structure. Smaller pore size, greater porosity, higher water uptake, and swelling ratio were achieved by incorporating CSNPs and DEX-loaded CSNPs. The cytotoxicity study was performed for the L929 fibroblast cell line. The drug release kinetics study was performed on a prepared drug delivery system. Finally, the release test results showed a suitable extended-release of DEX from the carrier over 16 days. Overall, the developed drug-releasing system can be a promising candidate for drug delivery applications.


Assuntos
Quitosana , Fibroínas , Nanopartículas , Preparações de Ação Retardada , Dexametasona/análogos & derivados , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidrogéis
3.
Int J Biol Macromol ; 160: 669-676, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479943

RESUMO

Recently, with the progression in tissue engineering, the importance of biocompatible nanocomposite film with suitable properties for potential applications in the biomedical area has been more developed. In this work, nanocomposite films of aldehyde-modified Carrageenan/Gelatin/halloysite nanotubes (AD-Carr/Gel/HNTs) nanocomposite films were successfully fabricated by the solution casting process. Halloysite nanotubes (HNTs) with different concentrations (0.5, 1.0, and 1.5 wt%) loaded into the aldehyde-modified Carrageenan/Gelatin (AD-Carr/Gel). Meanwhile, the developed AD-Carr/Gel/HNTs nanocomposite films were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), mechanical property, water adsorption as well as in vitro degradation. The feasibility and capability of the nanocomposite films were further evaluated by hemocompatibility study, which showed that these nanocomposite films are hemocompatible. Besides, MTT assay revealed that the nanocomposite films are non-toxic, presenting the films as a good candidate to be used for tissue engineering purposes.


Assuntos
Aldeídos/química , Carragenina/química , Gelatina/química , Nanocompostos/química , Nanotubos/química , Engenharia Tecidual
4.
Int J Biol Macromol ; 154: 198-205, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32184143

RESUMO

Scaffolds of tissue engineering for particular sites, for example, nerve, cardiac, and bone tissues, require a comprehensive design of 3D biomaterials that covers all aspects of physical structures and chemical composition, needed for desired cell regeneration. Injectable and in situ forming hydrogel scaffolds, possessing highly hydrated and interconnected structures, have demonstrated several advantages for use in regenerative medicine. In this study, we have developed a new design of injectable hydrogels based on collagen, aldehyde modified-nanocrystalline cellulose, and chitosan loaded with gold nanoparticles (Collagen/ADH-CNCs/CS-Au). The results of experiments exposed that the various molar ratios of Collagen/CNCs and the presence of CS-Au content have a significant effect on the microscopic morphology, equilibrium swelling, in vitro degradation, and mechanical properties of the hydrogels. The cytotoxicity analysis was performed for the NIH 3T3 cell line, which displays the effectiveness and non-toxicity of the developed hydrogels towards the destruction of the cells. The achieved results suggested that the prepared hydrogel network has great potential as a new biomaterial for tissue engineering applications.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Nanopartículas Metálicas/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Quitosana/química , Colágeno/química , Ouro/química , Camundongos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...