Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(10): 3537-3545, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36853274

RESUMO

During recent years, great progress has been made in understanding the adsorption of surfactants at liquid interfaces. In addition to tensiometry, new efficient methodologies have been developed, in particular interfacial selective optical methods which allow direct access to the adsorbed amounts and interfacial layer compositions. In addition to these new experimental tools, the thermodynamic description by equations of state now allows one to provide a quantitative picture of surfactant interfacial layers. This is most notable for surfactant layers at water/oil interfaces. Additional knowledge about the structure of interfacial layers was gained through different types of molecular modeling. Improved interrelationships between these three aspects are the challenges for current and future work. Particular attention must be paid to dilational interfacial rheology studies, as these mechanical quantities are much more sensitive to small changes in the interfacial composition and structure.

2.
Adv Colloid Interface Sci ; 279: 102143, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32224338

RESUMO

The theoretical description of the adsorption of surfactants at interfaces between aqueous solutions and oil was based over a very long time on models derived for the solution/air interface. Thus, most of the experimentally observed peculiarities could not be specifically considered but were merely interpreted in terms of a penetration of oil molecules into the alkyl chain layer of the adsorbed surfactant molecules. These penetrating oil molecules enhance the surfactant adsorption as compared to the water/air interface. Later on, for the special situations at water/oil interfaces a competitive adsorption of surfactant and oil molecules was postulated, allowing a much better description of experimental data. This picture, however, was unable to explain why the interfacial tension of the water/oil interface decreases very quickly when extremely small amounts of surfactants are added to the water. This effect cannot be of competitive nature, but a cooperativity of surfactant and oil molecules forming a mixed adsorption layer is required instead. This cooperative effect means that already few surfactant molecules adsorbed at the interface can induce a significant ordering of oil molecules in the interfacial layer. This new interfacial structure, in turn, attracts further surfactant molecules to adsorb. Improving the theoretical description of experimental data was finally achieved by applying suitable adsorption models for the two adsorbing compounds, i.e. a Frumkin adsorption model for the oil molecules and a Langmuir, Frumkin, or reorientation model for the adsorbing surfactant molecules. Here, the progress in modelling surfactant adsorption at water/oil interfaces is discussed mainly for the homologous series of the cationic surfactants CnTAB, of the anionic surfactant SDS, and members of the homologous series of the non-ionic surfactants CnDMPO at water/alkane interfaces.

3.
J Colloid Interface Sci ; 539: 30-37, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30572287

RESUMO

The dilational visco-elasticity of surfactant adsorption layers was measured at low frequencies by the drop profile analysis tensiometry using oscillating drops. As the studied non-ionic surfactant C13DMPO (tridecyl dimethyl phosphine oxide) is soluble in water and in hexane, the partitioning of the surfactant between the two solvents had to be taken into consideration. The diffusion controlled exchange of matter theory was generalized in order to take into consideration the curvature of the interface, the diffusional transport in both adjacent bulk phases as well as the transfer across the liquid interface. Using two configurations, i.e. water drop in hexane and hexane drop in water, it is shown that the frequency dependence of the visco-elasticity modulus and the phase angle can be well described when the correct partition coefficient is applied. The surface activity of the selected surfactant C13DMPO is optimum to demonstrate the impact of matter transfer across the interface on the dilational visco-elasticity of interfacial adsorption layers of non-ionic surfactants.

4.
J Surfactants Deterg ; 20(6): 1225-1241, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29200810

RESUMO

Surface tension and dilational viscoelasticity of solutions of various surfactants measured with bubble and drop profile analysis tensiometry are discussed. The study also includes experiments on the co-adsorption of surfactant molecules from a solution drop and alkane molecules from saturated alkane vapor phase. Using experimental data for 12 surfactants with different surface activities, it is shown that depletion due to adsorption of surfactant from the drop bulk can be significant. An algorithm is proposed quantitatively to take into consideration the depletion effect which is required for a correct description of the co-adsorption of alkanes on the solution drop surface and the correct analysis of experimental dynamic surface tension data to determine the adsorption mechanism. Bubble and drop profile analysis tensiometry is also the method of choice for measuring the dilational viscoelasticity of the adsorbed interfacial layer. The same elasticity moduli are obtained with the bubble and drop method only when the equilibrium surface pressures are sufficiently small (Π < 15 mN m-1). When the surface pressure for a surfactant solution is larger than this value, the viscoelasticity moduli determined from drop profile experiments become significantly larger than those obtained from bubble profile measurements.

5.
Adv Colloid Interface Sci ; 247: 115-129, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28063521

RESUMO

The dynamics of surfactant interfacial layers was first discussed more than a century ago. In 1946 the most important work by Ward and Tordai was published which is still the theoretical basis of all new models to describe the time dependence of interfacial properties. In addition to the diffusion controlled adsorption mechanism, many other models have been postulated in literature, however, well performed experiments with well defined surfactant systems have shown that the diffusional transport is the main process governing the entire formation of surfactant adsorption layers. The main prerequisite, in addition to the diffusional transport, is the consideration of the right boundary condition at the interface, given by a respective equation of state. In addition to the classical models of Langmuir and Frumkin, also the so-called reorientation or interfacial aggregation models are to be assumed to reach a quantitative description of respective experimental data. Moreover, the adsorption of surfactants at the interface between water and a gas phase different from air can be strongly influenced by the type of molecules within the gas phase, such as alkane vapours. These oil molecules co-adsorb from the gas phase and change the adsorption kinetics strongly. Besides the discussion of how to apply theoretical adsorption kinetics models correctly, a large number of experimental data are presented and the way of a quantitative analysis of the adsorption mechanism and the main characteristic parameters is presented. This includes micellar solutions as well as mixtures of surfactants of ionic and non-ionic nature.

6.
Phys Chem Chem Phys ; 19(3): 2193-2200, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28045155

RESUMO

The dynamic and equilibrium surface tension for drops of aqueous C14EO8 solutions at the interface to pure air or pentane, hexane, heptane and toluene saturated air, and the dynamic surface tension of pure water at these interfaces are presented. Two theoretical models were employed: both assuming a diffusion controlled adsorption of the surfactant, and either a diffusion or kinetic barrier governed adsorption of the alkanes. The experimental results are best described by the model which implies a diffusion control for the C14EO8 molecules and the existence of a kinetic barrier for the alkane molecules. The desorption of alkanes from the surface layer after equilibration and their subsequent removal from the measuring cell was studied as well. The desorption process was shown to be slow for heptane and hexane. However, for the pentane vapor the desorption is quite rapid, and after the desorption commences the surface tension becomes equal to that at the interface with pure air.

7.
Adv Colloid Interface Sci ; 244: 100-112, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26656422

RESUMO

The influence of hexane vapor in the air atmosphere on the surface tension of water and solutions of C10EO8, CnTAB and proteins are presented. For dry air, a fast and strong decrease of surface tension of water was observed. In humid air, the process is slower and the surface tension higher. There are differences between the results obtained by the maximum bubble pressure, pendant drop and emerging bubble methods, which are discussed in terms of depletion and initial surface load. The surface tension of aqueous solutions of ß-сasein (BCS), ß-lactoglobulin (BLG) and human serum albumin (HSA) at the interfaces with air and air-saturated hexane vapor were measured. The results indicate that the equilibrium surface tension in the hexane vapor atmosphere is considerably lower (at 13-20mN/m) as compared to the values at the interface with pure air. A reorientation model is proposed assuming several states of adsorbed molecules with different molar area values. The newly developed theoretical model is used to describe the effect of alkane vapor in the gas phase on the surface tension. This model assumes that the first layer is composed of surfactant (or protein) molecules mixed with alkane, and the second layer is formed by alkane molecules only. The processing of the experimental data for the equilibrium surface tension for the C10EO8 and BCS solutions results in a perfect agreement between the observed and calculated values. The co-adsorption mechanism of dipalmitoyl phosphatidyl choline (DPPC) and the fluorocarbon molecules leads to remarkable differences in the surface pressure term of cohesion Πcoh. This in turn leads to a very efficient fluidization of the monolayer. It was found that the adsorption equilibrium constant for dioctanoyl phosphatidyl choline is increased in the presence of perfluorohexane, and the intermolecular interaction of the components is strong.


Assuntos
Caseínas/química , Fluorocarbonos/química , Hexanos/química , Lactoglobulinas/química , Albumina Sérica Humana/química , 1,2-Dipalmitoilfosfatidilcolina/química , Adsorção , Ar/análise , Cetrimônio , Compostos de Cetrimônio/química , Cinética , Fosfatidilcolinas/química , Propriedades de Superfície , Tensoativos/química , Termodinâmica , Água/química
8.
Langmuir ; 32(22): 5500-9, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27164467

RESUMO

The dilational viscoelasticity of adsorption layer was measured at different frequencies of drop and bubble surface area oscillations for aqueous C12EO5 solutions. The modulus values obtained by the two experimental protocols are the same for Π < 15 mN/m, while for higher surface pressures the values from drop experiments exceed those from bubble profile analysis. The nature of this phenomenon was studied using stress deformation experiments. At high surfactant concentrations the magnitude of surface tension variations is essentially higher for drops as compared with bubbles, leading to an increased viscoelasticity modulus for oscillating drops. The observed effects are analyzed quantitatively using a diffusion controlled exchange of matter model. The viscoelasticity moduli for a number of surfactants (different CnEOm and Tritons, C13DMPO, and SDS) are reported, and it is shown that the discrepancies between the data obtained by the two methods for many surfactants agree well with the predictions made here.

9.
Adv Colloid Interface Sci ; 233: 200-222, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26198014

RESUMO

Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry.


Assuntos
Modelos Químicos , Proteínas/química , Tensoativos/química , Água/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Cinética , Pressão , Reologia , Eletricidade Estática , Tensão Superficial , Termodinâmica , Viscosidade
10.
Adv Colloid Interface Sci ; 222: 509-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25813359

RESUMO

The equations of state, adsorption isotherms and functions of the distribution of protein molecules in liquid interfacial layers with respect to molar area and the equations for their viscoelastic behavior are presented. This theory was used to determine the adsorption characteristics of ß-casein and ß-lactoglobulin at water/oil interfaces. The experimental results are shown to be describable quite adequately by the proposed theory with consistent model parameters. The data analysis demonstrated that the ß-casein molecule adsorbed at equilibrium conditions is more unfolded as compared with dynamic conditions, and this fact causes the significant increase of the adsorption equilibrium constant. The theory assumes the adsorption of protein molecules from the aqueous solution and a competitive adsorption of alkane molecules from the alkane phase. The comparison of the experimental equilibrium interfacial tension isotherms for ß-lactoglobulin at the solution/hexane interface with data calculated using the proposed theoretical model demonstrates that the assumption of a competitive adsorption is essential, and the influence of the hexane molecules on the shape of the adsorption isotherm does in fact exist.


Assuntos
Alcanos/química , Caseínas/química , Lactoglobulinas/química , Água/química , Adsorção , Pressão , Soluções , Propriedades de Superfície , Termodinâmica
11.
J Phys Chem B ; 119(9): 3768-75, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25629645

RESUMO

The influence of the addition of the nonionic surfactants C12DMPO, C14DMPO, C10OH, and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of ß-casein (BCS) and ß-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the dilational surface rheology is studied. A maximum in the viscoelasticity modulus |E| occurs at very low surfactant concentrations (10(-4) to 10(-3) mmol/L) for mixtures of BCS with C12DMPO and C14DMPO and for mixtures of BLG with C10EO5, while for mixture of BCS with C10EO5 the value of |E| only slightly increased. The |E| values calculated with a recently developed model, which assumes changes in the interfacial molar area of the protein molecules due to the interaction with the surfactants, are in satisfactory agreement with experimental data. A linear dependence exists between the ratio of the maximum modulus for the mixture to the modulus of the single protein solution and the coefficient reflecting the influence of the surfactants on the adsorption activity of the protein.


Assuntos
Ar , Caseínas/química , Lactoglobulinas/química , Reologia , Tensoativos/química , Adsorção , Soluções , Tensão Superficial
12.
Langmuir ; 30(43): 12812-8, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25291443

RESUMO

The influence of the addition of the nonionic surfactants dodecyl dimethyl phosphine oxide (C12DMPO), tetradecyl dimethyl phosphine oxide (C14DMPO), decyl alcohol (C10OH), and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of ß-casein (BCS) and ß-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the surface tension is studied. It is shown that a significant decrease of the water/air surface tension occurs for all the surfactants studied at very low concentrations (10(-5)-10(-3) mmol/L). All measurements were performed with the buoyant bubble profile method. The dynamics of the surface tension was simulated using the Fick and Ward-Tordai equations. The calculation results agree well with the experimental data, indicating that the equilibration times in the system studied do not exceed 30 000 s, while the time required to attain the equilibrium on a plane surface is by one order of magnitude higher. To achieve agreement between theory and experiment for the mixtures, a supposition was made about the influence of the concentration of nonionic surfactant on the adsorption activity of the protein. The adsorption isotherm equation of the protein was modified accordingly, and this corrected model agrees well with all experimental data.


Assuntos
Ar , Caseínas/química , Lactoglobulinas/química , Modelos Químicos , Tensoativos/química , Adsorção , Animais , Bovinos , Soluções , Tensão Superficial
13.
Soft Matter ; 10(36): 6873-87, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24909966

RESUMO

On the basis of experimental data for the homologous series of alkyltrimethylammonium bromides (CnTAB) the equilibrium surface tension isotherms at three types of liquid-fluid interfaces are discussed: solution/air, solution/alkane vapor and solution/liquid alkane interfaces. It is shown that the adsorption characteristics can be described at all three interfaces by the same thermodynamic approach. In the presence of alkane molecules (in the liquid alkane phase or in the alkane vapor phase) the CnTAB adsorption layers can be best described by a co-adsorption of the alkane molecules.

14.
Langmuir ; 29(45): 13783-9, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24111851

RESUMO

The adsorption of members of the homologous series of alkyl trimethylammonium bromides (C(n)TAB) is studied at water/alkane interfaces by drop profile analysis tensiometry. The results are discussed in terms of a competitive adsorption process of alkane and surfactant molecules. A thermodynamic model, derived originally for the adsorption of surfactant mixtures, is adapted such that it describes a competitive adsorption of the surfactant molecules from the aqueous phase and alkane molecules from the oil phase. This new model involves the interspecies attraction coefficient, which mutually increases the adsorption activities of the alkane and C(n)TAB. The effects of the alkyl chain length n of C(n)TABs and the influence of the number of C atoms in the alkane chain are discussed, and the physical quantities are compared to those determined at the aqueous solution/air interface. The new theoretical model for aqueous solution/oil interfaces is also compared to a theory that does not consider the adsorption of alkane. The proposed new model demonstrates good agreement with the experimental data.


Assuntos
Alcanos/química , Compostos de Amônio Quaternário/química , Tensoativos/química , Água/química , Adsorção , Volatilização
15.
J Colloid Interface Sci ; 410: 181-7, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24011787

RESUMO

We measured the interfacial tensions of aqueous solutions against different oil phases using drop profile analysis tensiometry (PAT-1, Sinterface Technologies, Germany) for decyl- and dodecyltrimethylammonium bromide (C10TAB and C12TAB) in phosphate buffer (10 mM, pH7). The following alkanes were used as oil phases: hexane, heptane, octane, nonane, decane, dodecane and tetradecane. The obtained equilibrium interfacial tension isotherms were fitted by the Frumkin Ionic Compressibility model (FIC). The surfactants adsorb at the water/oil interface in competition with the oil molecules. At high surfactant surface coverage this competitive adsorption is manifested in two ways. First, for short chain surfactants, the oil molecules are embedded into the adsorption layer. Second, for long chain surfactants, the short alkane chains of the oil molecules are squeezed out from the adsorption layer due to strong mutual interaction between surfactants' chains.


Assuntos
Alcanos/química , Brometos/química , Compostos de Amônio Quaternário/química , Água/química , Adsorção , Propriedades de Superfície
16.
Langmuir ; 29(23): 6964-8, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23688004

RESUMO

The drop and bubble profile methods are used to study the viscoelasticity modulus of C14EO8 aqueous solutions within a wide concentration range. To determine the equilibrium concentration of the surfactant in the drop bulk, the correction is introduced for the surfactant losses caused by its adsorption on the drop surface. It is shown that with this correction the frequency dependencies of the viscoelasticity modulus measured by either of the two experimental techniques are almost the same. The theoretical model is used, which describes the surfactant dilational rheology assuming the diffusion-governed adsorption. The experimental data for C14EO8 solutions is described by the reorientation model that assumes the two states of surfactant molecules with different molar areas in the surface layer and the intrinsic compressibility of the molecules.


Assuntos
Álcoois/química , Soluções , Propriedades de Superfície , Tensoativos/química , Viscosidade , Água/química
17.
J Colloid Interface Sci ; 387(1): 162-74, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22939427

RESUMO

The superposition-additive approach developed previously was shown to be applicable for the calculations of the thermodynamic parameters of formation and atomization of conjugate systems, their dipole polarizability, molecular diamagnetic susceptibility, π-electronic ring currents, etc. In the present work, the applicability of this approach for the calculation of the thermodynamic parameters of formation and clusterization at the water/air interface of alkanes, fatty alcohols, thioalcohols, amines, nitriles, fatty acids (C(n)H(2n+1)X, X is the functional group) and cis-unsaturated carboxylic acids (C(n)H(2n-1)COOH) is studied. Using the proposed approach the thermodynamic quantities determined agree well with the available data, either calculated using the semiempirical (PM3) quantum chemical method, or obtained in experiments. In particular, for enthalpy and Gibbs' energy of the formation of substituted alkane monomers from the elementary substances, and their absolute entropy, the standard deviations of the values calculated according to the superposition-additive scheme with the mutual superimposition domain C(n-2)H(2n-4) (n is the number of carbon atoms in the alkyl chain) from the results of PM3 calculations for alkanes, alcohols, thioalcohols, amines, fatty acids, nitriles and cis-unsaturated carboxylic acids are respectively: 0.05, 0.004, 2.87, 0.02, 0.01, 0.77, and 0.01 kJ/mol for enthalpy; 2.32, 5.26, 4.49, 0.53, 1.22, 1.02, 5.30 J/(molK) for absolute entropy; 0.69, 1.56, 3.82, 0.15, 0.37, 0.69, 1.58 kJ/mol for Gibbs' energy, whereas the deviations from the experimental data are: 0.52, 5.75, 1.40, 1.00, 4.86 kJ/mol; 0.52, 0.63, 1.40, 6.11, 2.21 J/(molK); 2.52, 5.76, 1.58, 1.78, 4.86 kJ/mol, respectively (for nitriles and cis-unsaturated carboxylic acids experimental data are not available). The proposed approach provides also quite accurate estimates of enthalpy, entropy and Gibbs' energy of boiling and melting, critical temperatures and standard heat capacities for several classes of substituted alkanes. For the calculation of thermodynamic functions of clusterization of dimers, trimers and tetramers of fatty alcohols, thioalcohols, amines, carboxylic acids and cis-unsaturated carboxylic acids two superposition-additive schemes are proposed which ensure the correct superimposition of the molecular graphs, including intermolecular hydrogen-hydrogen interactions in the clusters. The calculations involve the thermodynamic parameters of clusterization obtained earlier by the PM3 method. It is shown that the proposed approach reproduces quite accurately the values calculated earlier and is applicable for the prediction of the thermodynamic parameters of the formation of surfactant monolayers.


Assuntos
Alcanos/química , Água/química , Ar/análise , Modelos Moleculares , Propriedades de Superfície , Tensoativos/química , Termodinâmica
18.
J Colloid Interface Sci ; 377(1): 1-6, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22484167

RESUMO

The complementary drop and bubble profile analysis and maximum bubble pressure tensiometry are used to measure the dynamic surface tension of aqueous SDS solutions in the presence of hardness salts (CaCl(2) and MgCl(2) in the ratio of 2:1 at concentrations of 6 and 40FH). The presence of hardness salts results in an essential increase of the SDS adsorption activity, which indicates the formation of Ca(DS)(2) and Mg(DS)(2) in the SDS solutions. The surface tension isotherms of SDS in presence of Ca(DS)(2) and Mg(DS)(2) are described using the generalised Frumkin model. The presence of hardness salts accelerates the ageing of SDS solutions as compared with the addition of 0.01 M NaCl due to a faster hydrolysis and hence formation of dodecanol. These results are used to estimate the possible concentration of dodecanol in the studied SDS solutions. The buoyant bubble profile method with harmonic surface oscillations is used to measure the dilational rheology of SDS solutions in presence of hardness salts in the frequency range between 0.005 Hz and 0.2 Hz. The visco-elasticity modulus in the presence of hardness salts is higher as compared with its values in the presence of 0.01 M NaCl additions. The ageing of SDS solutions leads to an essential increase of the visco-elastic modulus.


Assuntos
Cloreto de Cálcio/química , Cloreto de Magnésio/química , Dodecilsulfato de Sódio/química , Substâncias Viscoelásticas/química , Água/química , Soluções , Tensão Superficial
19.
Phys Chem Chem Phys ; 13(47): 20927-32, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22042000

RESUMO

The applicability of the superposition-additive approach for the calculation of the thermodynamic parameters of formation and atomization of conjugate systems, their dipole electric polarisabilities, molecular diamagnetic susceptibilities, π-electron circular currents, as well as for the estimation of the thermodynamic parameters of substituted alkanes, was demonstrated earlier. Now the applicability of the superposition-additive approach for the description of clusterization of fatty alcohols, thioalcohols, amines, carboxylic acids at the air/water interface is studied. Two superposition-additive schemes are used that ensure the maximum superimposition of the graphs of the considered molecular structures including the intermolecular CH-HC interactions within the clusters. The thermodynamic parameters of clusterization are calculated for dimers, trimers and tetramers. The calculations are based on the values of enthalpy, entropy and Gibbs' energy of clusterization calculated earlier using the semiempirical quantum chemical PM3 method. It is shown that the proposed approach is capable of the reproduction with sufficiently enough accuracy of the values calculated previously.


Assuntos
Ar , Alcanos/química , Água/química , Aminas/química , Ácidos Carboxílicos/química , Álcoois Graxos/química , Teoria Quântica , Termodinâmica
20.
Adv Colloid Interface Sci ; 168(1-2): 167-78, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21798491

RESUMO

Each experimental method has a certain range of application, and so do the instruments for measuring dynamic interfacial tension and dilational rheology. While the capillary pressure tensiometry provides data for the shortest adsorption times starting from milliseconds at liquid/gas and tens of milliseconds at liquid/liquid interfaces, the drop profile tensiometry allows measurements in a time window from seconds to many hours. Although both methods together cover a time range of about eight orders of magnitude (10(-3) s to 10(5) s), not all surfactants can be investigated with these techniques in the required concentration range. The same is true for studies of the dilational rheology. While drop profile tensiometry allows oscillations between 10(-3) Hz and 0.2 Hz, which can be complemented by measurements with capillary pressure oscillating drops and the capillary wave damping method (up to 10(3) Hz) these six orders of magnitude in frequency are often insufficient for a complete characterization of interfacial dilational relaxations of surfactant adsorption layers. The presented analysis provides a guide to select the most suitable experimental method for a given surfactant to be studied. The analysis is based on a diffusion controlled adsorption kinetics and a Langmuir adsorption model.


Assuntos
Reologia/métodos , Adsorção , Estudos de Viabilidade , Cinética , Modelos Teóricos , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...