Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 280(48): 39716-22, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16179345

RESUMO

Aspirin is effective in the therapy of cardiovascular diseases, because it causes acetylation of cyclooxygenase 1 (COX-1) leading to irreversible inhibition of platelets. Additional mechanisms can be suspected, because patients treated with other platelet COX inhibitors such as indomethacin do not display an increased bleeding tendency as observed for aspirin-treated patients. Recently, aspirin and other anti-inflammatory drugs were shown to induce shedding of L-selectin in neutrophils in a metalloproteinase-dependent manner. Therefore, we investigated the effects of aspirin on the von Willebrand Factor receptor complex glycoprotein (GP) Ib-V-IX, whose lack or dysfunction causes bleeding in patients. As quantified by fluorescence-activated cell sorting analysis in whole blood, aspirin, but not its metabolite salicylic acid, induced dose-dependent shedding of human and murine GPIbalpha and GPV from the platelet surface, whereas other glycoproteins remained unaffected by this treatment. Biotinylated fragments of GPV were detected by immunoprecipitation in the supernatant of washed mouse platelets, and the expression level of GPIbalpha was decreased in these platelets as measured by Western blot analysis. Although shedding occurred normally in COX-1-deficient murine platelets, shedding was completely blocked by a broad-range metalloproteinase inhibitor and, more importantly, in mouse platelets expressing an inactive form of ADAM17. Shed fragments of GPIbalpha and GPV were elevated in the plasma of aspirin-injected mice compared with animals injected with control buffer. These data demonstrate that aspirin at high concentrations induces shedding of GPIbalpha and GPV by an ADAM17-dependent mechanism and that this process can occur in vivo.


Assuntos
Proteínas ADAM/química , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Proteína ADAM17 , Animais , Biotinilação , Plaquetas/metabolismo , Western Blotting , Adesão Celular , Inibidores de Ciclo-Oxigenase/farmacologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imunoprecipitação , Selectina L/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Neutrófilos/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Fatores de Tempo
2.
Blood ; 106(8): 2757-60, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15976180

RESUMO

Platelets play a crucial role in the physiology of primary hemostasis and pathophysiologic processes such as arterial thrombosis. Accumulating evidence suggests a role of reactive oxygen species (ROSs) in platelet activation. Here we show that platelets activated with different agonists produced intracellular ROSs, which were reduced by reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidase inhibitors and superoxide scavengers. In addition, we demonstrate that ROSs produced in platelets significantly affected alphaIIbbeta3 integrin activation but not alpha and dense granule secretion and platelet shape change. Thrombin-induced integrin alphaIIbbeta3 activation was significantly decreased after pretreatment of platelets with NAD(P)H oxidase inhibitors (diphenylene iodonium [DPI] [45% +/- 9%] and apocynin [43% +/- 11%]) and superoxide scavengers (tiron [60% +/- 9%] and Mn(III)tetrakis (1-methyl-4-pyridyl)porphyrin [MnTMPyP] [70% +/- 6%]). These inhibitors also reduced platelet aggregation and thrombus formation on collagen under high shear and achieved their effects independent of the nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway.


Assuntos
Plaquetas/metabolismo , GMP Cíclico/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Inibidores Enzimáticos/farmacologia , Humanos , NADPH Oxidases/antagonistas & inibidores , Superóxidos/metabolismo
3.
Clin Chem ; 51(6): 957-65, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15817818

RESUMO

BACKGROUND: Clopidogrel is a potent drug for prevention of adverse effects during and after coronary intervention. Increasing experience indicates that a significant proportion of patients do not respond adequately to clopidogrel. Because failure of antiplatelet therapy can have severe consequences, there is need for a reliable assay to quantify the effectiveness of clopidogrel treatment. METHODS: Of 24 healthy volunteers admitted to the study, 18 were treated for 1 week with clopidogrel (300-mg loading dose and 75-mg maintenance dose), and 6 with placebo. Platelet function was monitored by 2 assays, based on flow cytometry and enzyme immunoassay, that measure the phosphorylation status of vasodilator-stimulated phosphoprotein (VASP) and by aggregometry, flow cytometry of P-selectin, and the platelet function analyzer at baseline, on days 1-5, and on day 9 of treatment. RESULTS: Aggregometry and VASP phosphorylation revealed a loss of platelet response to ADP within 12 h after clopidogrel intake. The phosphorylation status of VASP correlated with the inhibition of platelet aggregation. In contrast, neither P-selectin expression nor PFA-100 closure time was a clear indicator of clopidogrel effects on platelets. CONCLUSIONS: VASP phosphorylation assays are reliable for quantifying clopidogrel effects. Because the VASP assay directly measures the function of the clopidogrel target, the P2Y12 receptor, the assay is selective for clopidogrel effects rather than effects of other platelet inhibitors commonly in use.


Assuntos
Monitoramento de Medicamentos/métodos , Inibidores da Agregação Plaquetária/efeitos adversos , Ticlopidina/análogos & derivados , Adulto , Aspirina/farmacologia , Biomarcadores/metabolismo , Tempo de Sangramento , Moléculas de Adesão Celular/metabolismo , Clopidogrel , Feminino , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Técnicas In Vitro , Masculino , Proteínas dos Microfilamentos , Selectina-P/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Agregação Plaquetária/efeitos dos fármacos , Ticlopidina/efeitos adversos , Fatores de Tempo
4.
Circulation ; 110(18): 2946-51, 2004 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-15505105

RESUMO

BACKGROUND: Platelet inhibition is a major strategy to prevent arterial thrombosis, but it is frequently associated with increased bleeding because of impaired primary hemostasis. The activating platelet collagen receptor, glycoprotein VI (GP VI), may serve as a powerful antithrombotic target because its inhibition or absence results in profound protection against arterial thrombosis but no major bleeding in mice. METHODS AND RESULTS: Mice lacking (-/-) or expressing half-levels (+/-) of the other major platelet collagen receptor, integrin alpha2beta1, were injected with the anti-GP VI antibody JAQ1 and analyzed on day 5. Anti-GP VI treatment resulted in a marked hemostatic defect in alpha2-/- or alpha2+/- mice, as shown by dramatically prolonged tail bleeding times. Platelet adhesion to collagen was studied in an ex vivo whole-blood perfusion system under high shear conditions. Weak integrin activation by thromboxane A2 (TxA2) receptor stimulation restored defective adhesion of anti-GP VI-treated wild-type but not alpha2-/- or alpha2+/- platelets to collagen. This process required the simultaneous activation of the G(q) and G13 signaling pathways, as demonstrated by use of the respective knockout strains. Conversely, inhibition of TxA2 production by aspirin severely compromised hemostasis in anti-GP VI-treated or GP VI/Fc receptor gamma-chain-deficient but not control mice. CONCLUSIONS: Anti-GP VI therapy may result in defective hemostasis in patients with reduced alpha2beta1 levels or concomitant aspirin therapy. These observations may have important implications for a potential use of anti-GP VI-based therapeutics in the prevention of cardiovascular disease.


Assuntos
Anticorpos Monoclonais/toxicidade , Aspirina/toxicidade , Fibrinolíticos/toxicidade , Hemorragia/induzido quimicamente , Hemostasia/efeitos dos fármacos , Integrina alfa2beta1/deficiência , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Trombose/prevenção & controle , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Aspirina/administração & dosagem , Tempo de Sangramento , Colágeno/farmacologia , Colágeno/fisiologia , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Hemorragia/prevenção & controle , Hemostasia/fisiologia , Integrina alfa2beta1/genética , Camundongos , Camundongos Knockout , Ativação Plaquetária/efeitos dos fármacos , Ativação Plaquetária/fisiologia , Adesividade Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/deficiência , Glicoproteínas da Membrana de Plaquetas/fisiologia , Receptores de Tromboxano A2 e Prostaglandina H2/efeitos dos fármacos , Receptores de Tromboxano A2 e Prostaglandina H2/fisiologia , Transdução de Sinais
5.
Nat Med ; 9(11): 1418-22, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14528298

RESUMO

Platelet activation at sites of vascular injury is essential for primary hemostasis, but also underlies arterial thrombosis leading to myocardial infarction or stroke. Platelet activators such as adenosine diphosphate, thrombin or thromboxane A(2) (TXA(2)) activate receptors that are coupled to heterotrimeric G proteins. Activation of platelets through these receptors involves signaling through G(q), G(i) and G(z) (refs. 4-6). However, the role and relative importance of G(12) and G(13), which are activated by various platelet stimuli, are unclear. Here we show that lack of Galpha(13), but not Galpha(12), severely reduced the potency of thrombin, TXA(2) and collagen to induce platelet shape changes and aggregation in vitro. These defects were accompanied by reduced activation of RhoA and inability to form stable platelet thrombi under high shear stress ex vivo. Galpha(13) deficiency in platelets resulted in a severe defect in primary hemostasis and complete protection against arterial thrombosis in vivo. We conclude that G(13)-mediated signaling processes are required for normal hemostasis and thrombosis and may serve as a new target for antiplatelet drugs.


Assuntos
Plaquetas/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Hemostasia/fisiologia , Trombose/metabolismo , Animais , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Knockout , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
FEBS Lett ; 544(1-3): 240-5, 2003 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-12782324

RESUMO

A peptide from the C-terminal domain of thrombospondin-1 (4N1-1) has been proposed to stimulate platelet aggregation by a novel mechanism involving both an activation-independent agglutination and an activation-dependent, glycoprotein (GP) IIb/IIIa-mediated aggregation which involves GPVI signaling but does not involve CD47. The present study demonstrates that 4N1-1 stimulated a different pattern of signal transduction pathways than the GPVI agonist convulxin. Furthermore, 4N1-1-induced platelet aggregation was activation-independent and not dependent on GPVI or GPIIb/IIIa. Interestingly, 4N1-1 also stimulated activation-independent agglutination of different megakaryocytic and non-megakaryocytic cells. 4N1-1-induced cell agglutination but not platelet signaling was inhibited by anti-CD47 antibodies.


Assuntos
Plaquetas/metabolismo , Trombospondina 1/química , Antígenos CD/biossíntese , Antígenos CD/metabolismo , Artérias/citologia , Western Blotting , Antígeno CD47 , Cálcio/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Integrina beta3/metabolismo , Megacariócitos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Selectina-P/biossíntese , Peptídeos , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Células Tumorais Cultivadas , Células U937 , Proteínas Quinases p38 Ativadas por Mitógeno
7.
Stroke ; 34(3): 764-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12624305

RESUMO

BACKGROUND AND PURPOSE: Dipyridamole and in particular dipyridamole in combination with low-dose aspirin are very effective in preventing recurrent stroke. However, the mechanism(s) underlying this dipyridamole effect have not been elucidated. Since dipyridamole inhibits the cGMP-specific phosphodiesterase type V in vitro, we hypothesized and tested whether therapeutically relevant dipyridamole concentrations enhance NO/cGMP-mediated effects in intact human platelets studied ex vivo. METHODS: Phosphorylation of vasodilator-stimulated phosphoprotein (VASP), an established marker of NO/cGMP effects in human platelets, was quantified by phosphorylation-specific antibodies and Western blots. Serotonin secretion and thromboxane synthase activity were determined by fluorometric quantification of derivatized serotonin and synthase products, respectively. RESULTS: Endothelium-derived factors such as NO and prostaglandin I2 are known to elevate both cGMP and cAMP levels with concomitant platelet inhibition and VASP phosphorylation. In our in vitro experiments, therapeutically relevant concentrations (3.5 micromol/L) of dipyridamole amplified only cGMP-mediated VASP phosphorylation due to the NO donor sodium nitroprusside, but not cAMP-mediated effects. Furthermore, thromboxane synthase activity and serotonin secretion, events important for initial platelet activation, were inhibited by sodium nitroprusside, an effect also enhanced by dipyridamole, demonstrating the functional relevance of these observations. Finally, the ex vivo enhancement of NO/cGMP effects was also observed with platelets obtained from healthy volunteers treated with extended-release dipyridamole. CONCLUSIONS: Under therapeutically relevant conditions, dipyridamole enhances platelet inhibition by amplifying the signaling of the NO donor sodium nitroprusside. These data support the concept that enhancement of endothelium-dependent NO/cGMP-mediated signaling may be an important in vivo component of dipyridamole action.


Assuntos
Plaquetas/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , GMP Cíclico/metabolismo , Dipiridamol/farmacologia , Óxido Nítrico/metabolismo , Fosfoproteínas/metabolismo , Vasodilatadores/farmacologia , Adulto , Alprostadil/farmacologia , Plaquetas/metabolismo , Preparações de Ação Retardada/farmacologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Proteínas dos Microfilamentos , Pessoa de Meia-Idade , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Valores de Referência , Serotonina/biossíntese , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Blood ; 101(10): 3948-52, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12531795

RESUMO

Glycoprotein (GP) VI is an essential collagen receptor on platelets and may serve as an attractive target for antithrombotic therapy. We have previously shown that a monoclonal antibody (mAb) against the major collagen-binding site on mouse GPVI (JAQ1) induces irreversible down-regulation of the receptor and, consequently, long-term antithrombotic protection in vivo. To determine whether this unique in vivo effect of JAQ1 is based on its interaction with the ligand-binding site on GPVI, we generated new mAbs against different epitopes on GPVI (JAQ2, JAQ3) and tested their in vitro and in vivo activity. We show that none of the mAbs inhibited platelet activation by collagen or the collagen-related peptide in vitro. Unexpectedly, however, injection of either antibody induced depletion of GPVI with the same efficacy and kinetics as JAQ1. Importantly, this effect was also seen with monovalent F(ab) fragments of JAQ2 and JAQ3, excluding the involvement of the Fc part or the dimeric form of anti-GPVI antibodies in this process. This indicates that anti-GPVI agents, irrespective of their binding site may generally induce down-regulation of the receptor in vivo.


Assuntos
Plaquetas/fisiologia , Colágeno/metabolismo , Glicoproteínas da Membrana de Plaquetas/deficiência , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de Colágeno/metabolismo , Animais , Sítios de Ligação , Plaquetas/imunologia , Colágeno/farmacologia , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Adesividade Plaquetária , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/química , Receptores de Colágeno/química , Receptores de IgG/genética , Receptores de IgG/fisiologia
9.
Biochem Pharmacol ; 64(3): 433-9, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12147294

RESUMO

The important role of cGMP and cGMP-dependent protein kinase (cGPK) for the inhibition of platelet activation and aggregation is well established and due to the inhibition of fundamental platelet responses such as agonist-stimulated calcium increase, exposure of adhesion receptors and actin polymerization. The diversity of cGMP binding proteins and their synergistic interaction with cAMP signaling in inhibiting platelets indicates that a variety of cGMP targets contribute to its antiplatelet action. Since stimulation of G(i)-proteins was recently shown to be essential for complete platelet activation/aggregation, the possibility that G(i)-signaling events are cGMP/cGPK targets was investigated. Thus, the effect of elevated cGMP levels and selective cGPK activation on purinergic and adrenergic receptor-evoked decrease of platelet cAMP content was closely examined. Experiments with a selective activator of cGPK demonstrate for the first time a cGMP-caused G(i)-protein inhibition and our data suggest that this effect is mediated by cGPK. Considering the essential role of G(i)-signaling for platelet activation, we propose that inhibition of G(i)-mediated signaling by cGMP/cGPK is an important mechanism of action underlying the platelet inhibition by cGMP-elevating endothelium derived factors and drugs.


Assuntos
Plaquetas/metabolismo , GMP Cíclico/metabolismo , Proteínas de Membrana , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/fisiologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Humanos , Técnicas In Vitro , Receptores Purinérgicos P2Y12
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...