Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; : 107331, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703997

RESUMO

Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of N-acetylglucosamine (GlcNAc) at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N-terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into Hela cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.

3.
Adv Exp Med Biol ; 1435: 219-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38175478

RESUMO

Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Enterocolite Pseudomembranosa , Humanos , Toxinas Bacterianas/toxicidade , Transporte Biológico , Anticorpos Antibacterianos
4.
Nature ; 622(7983): 465-467, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37833474
5.
Chemistry ; 29(29): e202300392, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37052513

RESUMO

In the last decade, it was discovered that protein mucin-type O-glycosylation and O-GlcNAcylation modify Tyr residues besides the well explored Thr and Ser amino acids. Several glycoproteomic studies have identified α-GalNAc-O-Tyr modifications, and studies propose that ß-GlcNAc-O-Tyr also exists as a new group of posttranslational modifications (PTMs). Specific bacterial toxins have further been identified to modify host GTPases with α-GlcNAc-O-Tyr to promote bacterial virulence. Despite being identified on numerous proteins, the biological roles, biosynthesis and expression of GalNAc- and GlcNAc-O-Tyr modifications are poorly understood. A major obstacle is the lack of tools to specifically detect and identify proteins containing these modifications. With this in mind, we prepared vaccine constructs and raised antibodies to enable selective detection of proteins carrying these new PTMs. The obtained polyclonal antibody sera were evaluated using ELISA and glycopeptide microarrays and were found to be highly selective for GlcNAc- and GalNAc-O-Tyr glycopeptides over the corresponding Ser- and Thr-modifications. For microarray analysis, synthetic GlcNAc- and GalNAc-O-Tyr Fmoc-amino acids were prepared and applied in Fmoc-SPPS to obtain an extensive O-glycopeptide library. After affinity purification, the antibodies were applied in western blot analysis and showed specific detection of α-GlcNAc-O-Tyr modified RhoA GTPase.


Assuntos
Glicopeptídeos , Tirosina , Sequência de Aminoácidos , Tirosina/metabolismo , Glicopeptídeos/química , Glicosilação , Processamento de Proteína Pós-Traducional , Anticorpos/metabolismo
6.
Naunyn Schmiedebergs Arch Pharmacol ; 396(2): 173-190, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36203094

RESUMO

Selected findings about Clostridioides difficile (formerly Clostridium difficile) toxins are presented in a narrative review. Starting with a personal view on research about G proteins, adenylyl cyclase, and ADP-ribosylating toxins in the laboratory of Günter Schultz in Heidelberg, milestones of C. difficile toxin research are presented with the focus on toxin B (TcdB), covering toxin structure, receptor binding, toxin up-take and refolding, the intracellular actions of TcdB, and the treatment of C. difficile infection.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Clostridioides difficile/metabolismo , Proteínas de Bactérias/metabolismo , Transdução de Sinais
7.
Cells ; 11(22)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36429089

RESUMO

Clostridioides bacteria are responsible for life threatening infections. Here, we show that in addition to actin, the binary toxins CDT, C2I, and Iota from Clostridioides difficile, botulinum, and perfrigens, respectively, ADP-ribosylate the actin-related protein Arp2 of Arp2/3 complex and its additional components ArpC1, ArpC2, and ArpC4/5. The Arp2/3 complex is composed of seven subunits and stimulates the formation of branched actin filament networks. This activity is inhibited after ADP-ribosylation of Arp2. Translocation of the ADP-ribosyltransferase component of CDT toxin into human colon carcinoma Caco2 cells led to ADP-ribosylation of cellular Arp2 and actin followed by a collapse of the lamellipodial extensions and F-actin network. Exposure of isolated mouse colon pieces to CDT toxin induced the dissolution of the enterocytes leading to luminal aggregation of cellular debris and the collapse of the mucosal organization. Thus, we identify the Arp2/3 complex as hitherto unknown target of clostridial ADP-ribosyltransferases.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Toxinas Bacterianas , Animais , Camundongos , Humanos , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Clostridioides , Actinas/metabolismo , Toxinas Bacterianas/farmacologia , Toxinas Bacterianas/metabolismo , Células CACO-2 , ADP Ribose Transferases/farmacologia , ADP Ribose Transferases/metabolismo , ADP-Ribosilação , Difosfato de Adenosina/metabolismo
9.
Bioorg Med Chem ; 68: 116875, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35716588

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an important biomolecule with essential roles at the intersection of energy metabolism, epigenetic regulation and cell signalling. Synthetic analogues of NAD+ are therefore of great interest as chemical tools for medicinal chemistry, chemical biology and drug discovery. Herein, we report the chemical synthesis and full analytical characterisation of three stereoisomers of 2″-amino NAD+, and their biochemical evaluation against two classes of NAD+-consuming enzymes: the human sirtuins 1-3, and the bacterial toxin TccC3. To rationalise the observed activities, molecular docking experiments were carried out with SIRT1 and SIRT2, which identified the correct orientation of the pyrophosphate linkage as a major determinant for activity in this series. These results, together with results from stability tests and a conformational analysis, allow, for the first time, a side-by-side comparison of the chemical and biochemical features, and analytical properties, of different 2″-amino NAD+ stereoisomers. Our findings provide insight into the recognition of co-substrate analogues by sirtuins, and will greatly facilitate the application of these important NAD+ analogues as chemical tool compounds for mechanistic studies with these as well as other NAD+-dependent enyzmes.


Assuntos
Sirtuínas , Difosfato de Adenosina , Epigênese Genética , Humanos , Simulação de Acoplamento Molecular , NAD/metabolismo , Sirtuína 2/metabolismo , Sirtuínas/metabolismo , Estereoisomerismo , Transferases/metabolismo
10.
Innovation (Camb) ; 3(4): 100261, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35669079
11.
J Infect Dis ; 225(7): 1296-1300, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011801

RESUMO

Clostridioides difficile infection (CDI) represents a significant burden on the health care system, one that is exacerbated by the emergence of binary toxin (CDT)-producing hypervirulent C. difficile strains. Previous work from our laboratory has shown that Toll-like receptor 2 (TLR2) recognizes CDT to induce inflammation. Here we explore the interactions of CDT with TLR2 and the impact on host immunity during CDI. We found that the TLR2/6 heterodimer, not TLR2/1, is responsible for CDT recognition, and that gene pathways including nuclear factor-κB and MAPK downstream of TLR2/6 are upregulated in mice with intact TLR2/6 signaling during CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Anticorpos Antibacterianos , Camundongos , NF-kappa B , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like
12.
Front Microbiol ; 12: 784856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912322

RESUMO

The intestinal pathogen Clostridioides (C.) difficile is a major cause of diarrhea both in hospitals and outpatient in industrialized countries. This bacterium produces two large exotoxins, toxin A (TcdA) and toxin B (TcdB), which are directly responsible for the onset of clinical symptoms of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and the severe, life-threatening pseudomembranous colitis. Both toxins are multidomain proteins and taken up into host eukaryotic cells via receptor-mediated endocytosis. Within the cell, TcdA and TcdB inactivate Rho and/or Ras protein family members by glucosylation, which eventually results in cell death. The cytotoxic mode of action of the toxins is the main reason for the disease. Thus, compounds capable of inhibiting the cellular uptake and/or mode-of-action of both toxins are of high therapeutic interest. Recently, we found that the sterol regulatory element-binding protein 2 (SREBP-2) pathway, which regulates cholesterol content in membranes, is crucial for the intoxication of cells by TcdA and TcdB. Furthermore, it has been shown that membrane cholesterol is required for TcdA- as well as TcdB-mediated pore formation in endosomal membranes, which is a key step during the translocation of the glucosyltransferase domain of both toxins from endocytic vesicles into the cytosol of host cells. In the current study, we demonstrate that intoxication by TcdA and TcdB is diminished in cultured cells preincubated with the compound U18666A, an established inhibitor of cholesterol biosynthesis and/or intracellular transport. U18666A-pretreated cells were also less sensitive against TcdA and TcdB variants from the epidemic NAP1/027 C. difficile strain. Our study corroborates the crucial role of membrane cholesterol for cell entry of TcdA and TcdB, thus providing a valuable basis for the development of novel antitoxin strategies in the context of CDADs.

13.
Cell Microbiol ; 23(8): e13326, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33720490

RESUMO

Photorhabdus luminescens Tc toxins are large tripartite ABC-type toxin complexes, composed of TcA, TcB and TcC proteins. Tc toxins are widespread and have shown a tropism for a variety of targets including insect, mammalian and human cells. However, their receptors and the specific mechanisms of uptake into target cells remain unknown. Here, we show that the TcA protein TcdA1 interacts with N-glycans, particularly Lewis X/Y antigens. This is confirmed using N-acetylglucosamine transferase I (Mgat1 gene product)-deficient Chinese hamster ovary (CHO) Lec1 cells, which are highly resistant to intoxication by the Tc toxin complex most likely due to the absence of complex N-glycans. Restoring Mgat1 gene activity, and hence complex N-glycan biosynthesis, recapitulated the sensitivity of these cells to the toxin. Exogenous addition of Lewis X trisaccharide partially inhibits intoxication in wild-type cells. Additionally, sialic acid also largely reduced binding of the Tc toxin. Moreover, proteolytic activation of TcdA1 alters glycan-binding and uptake into target cells. The data suggest that TcdA1-binding is most likely multivalent, and carbohydrates probably work cooperatively to facilitate binding and intoxication.


Assuntos
Toxinas Bacterianas , Photorhabdus , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Polissacarídeos
14.
Front Pharmacol ; 11: 1204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903430

RESUMO

Infections with the pathogenic bacterium Clostridioides (C.) difficile are coming more into focus, in particular in hospitalized patients after antibiotic treatment. C. difficile produces the exotoxins TcdA and TcdB. Since some years, hypervirulent strains are described, which produce in addition the binary actin ADP-ribosylating toxin CDT. These strains are associated with more severe clinical presentations and increased morbidity and frequency. Once in the cytosol of their target cells, the catalytic domains of TcdA and TcdB glucosylate and thereby inactivate small Rho-GTPases whereas the enzyme subunit of CDT ADP-ribosylates G-actin. Thus, enzymatic activity of the toxins leads to destruction of the cytoskeleton and breakdown of the epidermal gut barrier integrity. This causes clinical symptoms ranging from mild diarrhea to life-threatening pseudomembranous colitis. Therefore, pharmacological inhibition of the secreted toxins is of peculiar medical interest. Here, we investigated the neutralizing effect of the human antimicrobial peptide α-defensin-5 toward TcdA, TcdB, and CDT in human cells. The toxin-neutralizing effects of α-defensin-5 toward TcdA, TcdB, and CDT as well as their medically relevant combination were demonstrated by analyzing toxins-induced changes in cell morphology, intracellular substrate modification, and decrease of trans-epithelial electrical resistance. For TcdA, the underlying mode of inhibition is most likely based on the formation of inactive toxin-defensin-aggregates whereas for CDT, the binding- and transport-component might be influenced. The application of α-defensin-5 delayed intoxication of cells in a time- and concentration-dependent manner. Due to its effect on the toxins, α-defensin-5 should be considered as a candidate to treat severe C. difficile-associated diseases.

16.
PLoS Pathog ; 16(8): e1008530, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810181

RESUMO

Anthrax toxin is the major virulence factor secreted by Bacillus anthracis, causing high mortality in humans and other mammals. It consists of a membrane translocase, known as protective antigen (PA), that catalyzes the unfolding of its cytotoxic substrates lethal factor (LF) and edema factor (EF), followed by translocation into the host cell. Substrate recruitment to the heptameric PA pre-pore and subsequent translocation, however, are not well understood. Here, we report three high-resolution cryo-EM structures of the fully-loaded anthrax lethal toxin in its heptameric pre-pore state, which differ in the position and conformation of LFs. The structures reveal that three LFs interact with the heptameric PA and upon binding change their conformation to form a continuous chain of head-to-tail interactions. As a result of the underlying symmetry mismatch, one LF binding site in PA remains unoccupied. Whereas one LF directly interacts with a part of PA called α-clamp, the others do not interact with this region, indicating an intermediate state between toxin assembly and translocation. Interestingly, the interaction of the N-terminal domain with the α-clamp correlates with a higher flexibility in the C-terminal domain of the protein. Based on our data, we propose a model for toxin assembly, in which the relative position of the N-terminal α-helices in the three LFs determines which factor is translocated first.


Assuntos
Antraz/microbiologia , Antígenos de Bactérias/química , Bacillus anthracis/fisiologia , Toxinas Bacterianas/química , Microscopia Crioeletrônica/métodos , Animais , Humanos , Modelos Moleculares , Conformação Proteica
17.
Sci Adv ; 6(11): eaaz2094, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195351

RESUMO

We identified a glucosyltransferase (YGT) and an ADP-ribosyltransferase (YART) in Yersinia mollaretii, highly related to glucosylating toxins from Clostridium difficile, the cause of antibiotics-associated enterocolitis. Both Yersinia toxins consist of an amino-terminal enzyme domain, an autoprotease domain activated by inositol hexakisphosphate, and a carboxyl-terminal translocation domain. YGT N-acetylglucosaminylates Rab5 and Rab31 at Thr52 and Thr36, respectively, thereby inactivating the Rab proteins. YART ADP-ribosylates Rab5 and Rab31 at Gln79 and Gln64, respectively. This activates Rab proteins by inhibiting GTP hydrolysis. We determined the crystal structure of the glycosyltransferase domain of YGT (YGTG) in the presence and absence of UDP at 1.9- and 3.4-Å resolution, respectively. Thereby, we identified a previously unknown potassium ion-binding site, which explains potassium ion-dependent enhanced glycosyltransferase activity in clostridial and related toxins. Our findings exhibit a novel type of inverse regulation of Rab proteins by toxins and provide new insights into the structure-function relationship of glycosyltransferase toxins.


Assuntos
ADP Ribose Transferases , Proteínas de Bactérias , Toxinas Bacterianas , Glicosiltransferases , Yersinia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cristalografia por Raios X , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Células HeLa , Humanos , Domínios Proteicos , Difosfato de Uridina/química , Difosfato de Uridina/metabolismo , Yersinia/química , Yersinia/enzimologia
18.
FASEB J ; 34(5): 6244-6261, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32190927

RESUMO

The human pathogenic bacterium Clostridioides difficile produces two exotoxins TcdA and TcdB, which inactivate Rho GTPases thereby causing C. difficile-associated diseases (CDAD) including life-threatening pseudomembranous colitis. Hypervirulent strains produce additionally the binary actin ADP-ribosylating toxin CDT. These strains are hallmarked by more severe forms of CDAD and increased frequency and severity. Once in the cytosol, the toxins act as enzymes resulting in the typical clinical symptoms. Therefore, targeting and inactivation of the released toxins are of peculiar interest. Prompted by earlier findings that human α-defensin-1 neutralizes TcdB, we investigated the effects of the defensin on all three C. difficile toxins. Inhibition of TcdA, TcdB, and CDT was demonstrated by analyzing toxin-induced changes in cell morphology, substrate modification, and decrease in transepithelial electrical resistance. Application of α-defensin-1 protected cells and human intestinal organoids from the cytotoxic effects of TcdA, TcdB, CDT, and their combination which is attributed to a direct interaction between the toxins and α-defensin-1. In mice, the application of α-defensin-1 reduced the TcdA-induced damage of intestinal loops in vivo. In conclusion, human α-defensin-1 is a specific and potent inhibitor of the C. difficile toxins and a promising agent to develop novel therapeutic options against C. difficile infections.


Assuntos
ADP Ribose Transferases/toxicidade , Anti-Infecciosos/metabolismo , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Enterotoxinas/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Organoides/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , alfa-Defensinas/metabolismo , ADP Ribose Transferases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Organoides/metabolismo , Organoides/patologia
19.
Life Sci Alliance ; 2(5)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31540947

RESUMO

Engineering delivery systems for proteins and peptides into mammalian cells is an ongoing challenge for cell biological studies as well as for therapeutic approaches. Photorhabdus luminescens toxin complex (PTC) is a heterotrimeric protein complex able to deliver diverse protein toxins into mammalian cells. We engineered the syringe-like nanomachine for delivery of protein toxins from different species. In addition, we loaded the highly active copepod luciferase Metridia longa M-Luc7 for accurate quantification of injected molecules. We suggest that besides the probable size limitation, the charge of the cargo also influences the efficiency of packing and transport into mammalian cells. Our data show that the PTC constitutes a powerful system to inject recombinant proteins, peptides, and potentially, other molecules into mammalian cells. In addition, in contrast to other protein transporters based on pore formation, the closed, compact structure of the PTC may protect cargo from degradation.


Assuntos
Proteínas de Bactérias/administração & dosagem , Toxinas Bacterianas/genética , Cisteína Endopeptidases/administração & dosagem , Photorhabdus/metabolismo , Engenharia de Proteínas/métodos , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clonagem Molecular , Copépodes/genética , Copépodes/metabolismo , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos , Injeções , Luciferases/genética , Luciferases/metabolismo , Nanopartículas , Photorhabdus/genética
20.
Bone ; 127: 592-601, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31376533

RESUMO

The human disease fibrodysplasia ossificans progressiva (FOP) is a rare and highly disabling disorder of extensive heterotopic bone growth that is caused by a point mutation (R206H) in the activation domain of Alk2, a BMP (bone morphogenic protein) type 1 receptor. The mutation leads to extensive BMP-signaling induced by Activin A, which is normally an antagonist for wildtype receptors, resulting in excessive and uncontrolled bone formation. Here, we studied the effects of Pasteurella multocida toxin (PMT), which activates osteoclasts and inhibits osteoblast activity, in C2C12 myoblasts expressing the mutant Alk2(R206H) receptor as model of FOP. In our study, we mainly used alkaline phosphatase (ALP) activity as marker to determine osteoblast differentiation. BMP-4 stimulated an increase in ALP activity in C2C12-Alk2wt and C2C12-Alk2(R206H) cells. By contrast, Activin A only induced ALP activity in C2C12-Alk2(R206H) cells. In both cases, PMT acted as a potent inhibitor of ALP activity. PMT-induced inhibition of ALP activity was paralleled by a constitutive activation of the heterotrimeric Gq protein. Expression of a permanently active Gαq blocked Activin A/Alk2(R206H)-dependent increase in ALP activity. Inactivation of Gq by specific inhibitor FR900359 blocked the PMT effect. Similarly, canonical second messengers and effectors of Gαq (e.g. ionophore A23187-induced increase in intracellular Ca2+ and activation of PKC by PMA (phorbol 12-myristate 13-acetate)) inhibited Alk2(R206H)-mediated induction of ALP activity. Notably, Activin A-induced increase in ALP activity in C2C12-Alk2(R206H) cells was also inhibited by stimulation of the α1A-adrenoceptor, which couples to Gαq, by phenylephrine. PMT did not alter tail phosphorylation of the major downstream effectors of the Alk2 receptor, Smad1/5/9; neither did the toxin affect nuclear translocation of the Smad-complex. However, PMT diminished BMP responsive element-induced gene expression. The data indicate that PMT potently inhibits the induction of osteoblast markers in a FOP model via activation of G proteins. Moreover, our findings indicate that activation of G protein-coupled receptors and of G protein signaling might be a rationale for pharmacological therapy of FOP.


Assuntos
Ativinas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Modelos Biológicos , Mioblastos/metabolismo , Miosite Ossificante/patologia , Osteoblastos/metabolismo , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Sinalização do Cálcio , Linhagem Celular , Camundongos , Proteínas Smad/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...