Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108595, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581807

RESUMO

Global climate change increases the likelihood of co-occurrence of hot and dry spells with increased intensity, frequency, and duration. Studying the impact of the two stresses provide a better understanding of tolerance mechanisms in wheat, and our study was focused on revealing plant stress responses to different severities of combined stress at two phenophases in old and modern wheat genotypes. During the stem elongation and anthesis stages, plants were exposed to four treatments: control, deficit irrigation, combined heat, and deficit irrigation at 31 °C (HD31) and 37 °C (HD37). The modern genotypes were less affected by deficit irrigation at stem elongation as they maintained higher photosynthesis, stomatal conductance, and leaf cooling than old genotypes. When the HD37 stress was imposed during anthesis, the modern genotypes exhibited superior performance compared to the old, which was due to their higher photosynthetic rates resulting from improved biochemical regulation and a higher chlorophyll content. The plant responses varied during two phenophases under the combined stress exposure. Genotypes subjected to HD37 stress during stem elongation, photosynthesis was mainly controlled by stomatal regulation, whereas at anthesis it was predominated by biochemical regulation. These findings contribute to a deeper comprehension of plant tolerance mechanisms in response to different intensities of co-occurring hot and dry weather conditions.


Assuntos
Genótipo , Temperatura Alta , Fotossíntese , Triticum , Triticum/genética , Triticum/fisiologia , Desidratação , Clorofila/metabolismo , Água/metabolismo , Estômatos de Plantas/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estresse Fisiológico/genética
2.
Plant Physiol Biochem ; 162: 690-698, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33780742

RESUMO

Drought significantly decreases crop productivity, especially in high water consuming crops like rice. Grain filling is one of the important critical growth phases in rice and drought during this phase leads to significant reduction in yield. In this study, a comparison was made between IR64 (drought susceptible) and Apo (drought tolerant) rice genotypes to capture the response to water limitation (50% field capacity (FC)) compared with the control (100%FC) during grain filling. Plants were grown in a high-throughput phenomics facility for precise imposition of moisture stress during grain filling. Apo performed better in water limited conditions with lower reduction of photosynthetic rate and maintenance of lower leaf temperature than IR64. Days from sowing to maturity, spikelet fertility and seed weight were more impeded by water limitation in IR64 than in Apo. Unlike Apo, IR64 did not show any decrease in transpiration rate at 50%FC compared with 100%FC. Metabolomic profiling of spikelets at grain filling showed distinct effects of water limitation on accumulation of metabolites, especially in Apo. Secondary metabolism, mainly the phenylpropanoid pathway involved in scavenging mechanisms, was upregulated in Apo. Accumulation of most amino acids was significantly higher in IR64 than in Apo. Due to higher rates of photosynthesis under stress, most carbohydrates accumulated more in Apo than in IR64 at 50%FC. Sucrose transporters were significantly upregulated in water limited conditions especially in Apo. Overall, thanks to higher source capacity, more source to sink transport and better scavenging, Apo showed a lower reduction in yield than IR64.


Assuntos
Oryza , Grão Comestível , Genótipo , Metaboloma , Oryza/genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...