Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(29): 35449-35458, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37450934

RESUMO

Direct write printing is restricted by the lack of dielectric materials that can be printed with high resolution and offer dissipation factors at radio frequency (RF) within the range of commercial RF laminates. Herein, we outline the development of dielectric materials with dielectric loss below 0.006 in X and Ku frequency bands (8.2-18 GHz), the range required for radio frequency and microwave applications. The described materials were designed for printability and processability, specifically a prolonged viscosity below 1000 cps and a robust cure procedure, which requires minimal heat treatment. In the first stage of this work, nonpolar ring-opening metathesis polymerization (ROMP) is demonstrated at room temperature in an open-air environment with a low-viscosity monomer, 5-vinyl-2-norbornene, using the second-generation Grubbs catalyst (G-II). Differential scanning calorimetry (DSC) was used to study how the catalyst activity is increased with heating at various stages in the reaction, which is then used as a strategy to cure the material after printing. The resulting cured poly(5-vinyl-2-norbornene) material is then characterized for dielectric and mechanical performance before and after a secondary heat treatment, which mimics processing procedures to incorporate subsequent printed conductor layers for multilayer applications. After the secondary heat treatment, the material exhibits a 55.0% reduction in the coefficient of thermal expansion (CTE), an increase in glass-transition temperature (Tg) from 32.4 to 46.1 °C, and an increased 25 °C storage modulus from 428 to 1031 MPa while demonstrating a minimal change in dielectric loss. Lastly, samples of the developed dielectric material are printed with silver overtop to demonstrate how the material can be effectively incorporated into fully printed, multilayer RF applications.

2.
MRS Adv ; 7(20): 410-414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35098250

RESUMO

Abstract: In this work, we used nanosphere lithography to fabricate large area 2-D magnetic nanoparticle (MNP) arrays on a flexible polyimide substrate (Kapton). Samples were fabricated by assembling polystyrene (PS) spheres on thin films of Co capped with Au. Etched PS spheres were used to mask Co-Au particle arrays. The MNP arrays were subjected to superconducting quantum interference device measurements; flat samples (10 nm Co coated with 10 nm Au) exhibited an M s of 117.3 emu g-1, which was lower than the reported literature value for bulk Co (162.7 emu g-1). When compared to the flat film, coercivity, H c, increased in a linear fashion with respect to particle size. These preliminary results reveal that future investigations of the magnetic properties on flexible substrates should account for residual Co remaining in the polymeric material, the unique MNP shape, the effect of order (or lack or order) of the 2D array, and positioning with respect to the direction of the magnetic field. Supplementary Information: The online version contains supplementary material available at 10.1557/s43580-021-00193-z.

3.
Microsc Res Tech ; 70(6): 497-505, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17457819

RESUMO

In this report, we describe the fabrication of a chiral metamaterial based on a periodic array of Y-shaped Al structures on a dielectric Mylar substrate. The unit cell dimensions of the Y-structure are approximately 100 microm on a side with 8 microm linewidths. The fabricated Y-structure elements are characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Quantitative elemental analyses were carried out on both the Y-structure, comprised of Al and its oxide, as well as adjacent regions of the underlying mylar substrate using the energy dispersive X-ray spectroscopy (EDS) capability of the SEM. Finite-Difference Time-Domain (FDTD) calculations of the negative index of refraction for a 3D wedge of multiple layers of the 2D metamaterials showed that these metamaterials possess double negative (-mu,-epsilon) electromagnetic bulk properties at THz frequencies. The same negative index of refraction was determined for a wedge comprised of appropriately scaled larger Y-structures simulated in the microwave region. This double negative property was confirmed experimentally by microwave measurements on a 3D wedge comprised of stacked and registered Y-structure sheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...