Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 9: 803732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35186827

RESUMO

Arylsulfatase B is an enzyme present in the lysosomes that involves in the breakdown of large sugar molecules known as glycosaminoglycans (GAGs). Arylsulfatase B chemically modifies two GAGs, namely, dermatan sulfate and chondroitin sulfate, by removing the sulfate group. Mutations in the gene encoding the arylsulfataseB enzyme causes lysosomal storage disorder, mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome. In this study, we report a case of congenital hearing loss with mild pigmentary changes in the retina, indicative of Usher syndrome, and a missense variant reported as likely pathogenic for MPS VI. Sequencing results identified a pathogenic missense variant p.Arg1746Gln in the CDH23 gene. However, another missense variant ARSB:p.Arg159Cys was reported as likely pathogenic to the treating physician. Mutations in ARSB gene have been associated with MPS VI. Subsequently, ARSB enzyme activity was found low twice in dried blood spot (DBS), suggestive of MPS VI. The patient did not have the clinical features of MPS VI, but considering the wide clinical spectrum, progressive nature of MPS VI, and the fact that a treatment for MPS VI is available to prevent disease progression, further biochemical, enzymatic, and in silico studies were performed to confirm the pathogenicity of this variant. In silico tools predicted this variant to be pathogenic. However, the results of urine and serum GAGs and ARSB enzyme levels measured from patient's fibroblast were found normal. Based on clinical and biochemical findings, ARSB:p.Arg159Cys is likely benign and did not support the diagnosis of MPS VI. However, CDH23:p.Arg1746Gln, a pathogenic variant, supports the underlying cause of hearing loss. This study highlights the importance of a robust correlation between genetic results and clinical presentation, and biochemical and enzymatic studies, to achieve a differential diagnosis.

2.
Sci Rep ; 9(1): 12366, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451751

RESUMO

Deficiency of propionyl-CoA carboxylase causes propionic acidemia and deficiencies of methylmalonyl-CoA mutase or its cofactor adenosylcobalamin cause methylmalonic acidemia. These inherited disorders lead to pathological accumulation of propionyl-CoA which is converted in Krebs cycle to methylcitrate (MCA) in a reaction catalyzed by citrate synthase. In healthy individuals where no propionyl-CoA accumulation occurs, this enzyme drives the condensation of acetyl-CoA with oxaloacetate to produce citric acid (CA), a normal Krebs cycle intermediate. The competitive synthesis of CA and MCA through the same enzymatic mechanism implies that increase in MCA production is accompanied by decrease in CA levels. In this study, we assessed MCA concentration and the ratio of MCA/CA as plausible markers for propionic and methylmalonic acidemias. We measured MCA and CA in dried blood spots using liquid chromatography tandem mass spectrometry. The reference ranges of MCA, CA and MCA/CA in 123 healthy individuals were ≤0.63 µmol/L, 36.6-126.4 µmol/L and 0.0019-0.0074, respectively. In patients with propionic and methylmalnic acidemias (n = 7), MCA concentration ranged between 1.0-12.0 µmol/L whereas MCA/CA was between 0.012-0.279. This is the first report to describe the potential role of MCA and MCA/CA in dried blood spots as diagnostic and monitoring biomarkers for inherited disorders of propionyl-CoA metabolism.


Assuntos
Biomarcadores/sangue , Citratos/sangue , Teste em Amostras de Sangue Seco , Erros Inatos do Metabolismo/sangue , Propionatos/sangue , Propionatos/metabolismo , Bioensaio , Estudos de Casos e Controles , Humanos , Ácido Metilmalônico/metabolismo
3.
Clin Chim Acta ; 487: 41-45, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30217751

RESUMO

Accumulation of methylcitrate is a biochemical hallmark of inborn errors of propionate metabolism, a group of disorders that include propionic acidemia, methylmalonic aciduria and cobalamin defects. In clinical laboratories, this analyte is measured without quantification by gas chromatography mass spectrometry as part of urine organic acids. Here we describe a simple, sensitive and specific method to quantify methylcitrate in dried urine spots by liquid chromatography tandem mass spectrometry. Methylcitrate is extracted and derivatized with 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole in a single step. A derivatization mixture was added to 3.2 mm disc of dried urine spots, incubated at 65 °C for 45 min and 4 µl of the reaction mixture were analyzed. Separation was achieved on C18 column with methylcitrate eluting at 3.8 min. Intraday and interday imprecision (n = 17) were ≤20.9%. The method was applied on dried urine spots from established patients and controls. In controls (n = 135), methylcitrate reference interval of 0.4-3.4 mmol/mol creatinine. In patients, methylcitrate ranged between 8.3 and 591 mmol/mol creatinine. Quantification of methylcitrate provides important diagnostic clues for propionic acidemia, methylmalonic aciduria and cobalamin disorders. The potential utilization of methylcitrate as monitoring biomarker of patients under treatment and whether it correlates with the clinical status has yet to be established.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Citratos/urina , Acidemia Propiônica/diagnóstico , Urinálise , Erros Inatos do Metabolismo dos Aminoácidos/urina , Cromatografia Líquida , Humanos , Acidemia Propiônica/urina , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...