Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5069, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604879

RESUMO

X-ray free-electron lasers (FELs) are state-of-the-art scientific tools capable to study matter on the scale of atomic processes. Since the initial operation of X-ray FELs more than a decade ago, several facilities with upgraded performance have been put in operation. Here we present the first lasing results of Athos, the soft X-ray FEL beamline of SwissFEL at the Paul Scherrer Institute in Switzerland. Athos features an undulator layout based on short APPLE-X modules providing full polarisation control, interleaved with small magnetic chicanes. This versatile configuration allows for many operational modes, giving control over many FEL properties. We show, for example, a 35% reduction of the required undulator length to achieve FEL saturation with respect to standard undulator configurations. We also demonstrate the generation of more powerful pulses than the ones obtained in typical undulators. Athos represents a fundamental step forward in the design of FEL facilities, creating opportunities in FEL-based sciences.

2.
J Synchrotron Radiat ; 30(Pt 4): 717-722, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37255024

RESUMO

Gas attenuators are important devices providing accurate variation of photon intensity for soft X-ray beamlines. In the SwissFEL ATHOS beamline front-end the space is very limited and an innovative approach has been taken to provide attenuation of three orders of magnitude up to an energy of 1200 eV. Additive manufacturing of a differential pumping system vacuum manifold allowed a triple pumping stage to be realized in a space of less than half a meter. Measurements have shown that the response of the device is as expected from theoretical calculations.


Assuntos
Fótons , Síncrotrons
3.
Nat Commun ; 13(1): 7170, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418902

RESUMO

The concomitant motion of electrons and nuclei on the femtosecond time scale marks the fate of chemical and biological processes. Here we demonstrate the ability to initiate and track the ultrafast electron rearrangement and chemical bond breaking site-specifically in real time for the carbon monoxide diatomic molecule. We employ a local resonant x-ray pump at the oxygen atom and probe the chemical shifts of the carbon core-electron binding energy. We observe charge redistribution accompanying core-excitation followed by Auger decay, eventually leading to dissociation and hole trapping at one site of the molecule. The presented technique is general in nature with sensitivity to chemical environment changes including transient electronic excited state dynamics. This work provides a route to investigate energy and charge transport processes in more complex systems by tracking selective chemical bond changes on their natural timescale.


Assuntos
Monóxido de Carbono , Diatomáceas , Humanos , Núcleo Celular , Aberrações Cromossômicas , Eletrônica
4.
Science ; 375(6578): 285-290, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34990213

RESUMO

In quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10-18 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized infrared laser pulse, we created a clock to time-resolve the electron dynamics and demonstrated control of the coherent electron motion by tuning the photon energy of the x-ray pulse. Core-excited states offer a fundamental test bed for studying coherent electron dynamics in highly excited and strongly correlated matter.

5.
Chimia (Aarau) ; 76(6): 529-537, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069722

RESUMO

Ultrafast single-particle imaging with intense x-ray pulses from free-electron laser sources provides a new approach for visualizing structure and dynamics on the nanoscale. After a short introduction to the novel free-electron laser sources and methods, we highlight selected applications and discuss how ultrafast imaging flourishes from method development to early applications in physics and biology to opportunities for chemical sciences.

6.
Sci Adv ; 7(50): eabk2247, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890219

RESUMO

Quantum fluid droplets made of helium-3 (3He) or helium-4 (4He) isotopes have long been considered as ideal cryogenic nanolabs, enabling unique ultracold chemistry and spectroscopy applications. The droplets were believed to provide a homogeneous environment in which dopant atoms and molecules could move and react almost as in free space but at temperatures close to absolute zero. Here, we report ultrafast x-ray diffraction experiments on xenon-doped 3He and 4He nanodroplets, demonstrating that the unavoidable rotational excitation of isolated droplets leads to highly anisotropic and inhomogeneous interactions between the host matrix and enclosed dopants. Superfluid 4He droplets are laced with quantum vortices that trap the embedded particles, leading to the formation of filament-shaped clusters. In comparison, dopants in 3He droplets gather in diffuse, ring-shaped structures along the equator. The shapes of droplets carrying filaments or rings are direct evidence that rotational excitation is the root cause for the inhomogeneous dopant distributions.

7.
J Chem Phys ; 155(3): 034201, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293898

RESUMO

Two-dimensional Fourier transform spectroscopy is a promising technique to study ultrafast molecular dynamics. Similar to transient absorption spectroscopy, a more complete picture of the dynamics requires broadband laser pulses to observe transient changes over a large enough bandwidth, exceeding the inhomogeneous width of electronic transitions, as well as the separation between the electronic or vibronic transitions of interest. Here, we present visible broadband 2D spectra of a series of dye molecules and report vibrational coherences with frequencies up to ∼1400 cm-1 that were obtained after improvements to our existing two-dimensional Fourier transform setup [Al Haddad et al., Opt. Lett. 40, 312-315 (2015)]. The experiment uses white light from a hollow core fiber, allowing us to acquire 2D spectra with a bandwidth of 200 nm, in a range between 500 and 800 nm, and with a temporal resolution of 10-15 fs. 2D spectra of nile blue, rhodamine 800, terylene diimide, and pinacyanol iodide show vibronic spectral features with at least one vibrational mode and reveal information about structural motion via coherent oscillations of the 2D signals during the population time. For the case of pinacyanol iodide, these observations are complemented by its Raman spectrum, as well as the calculated Raman activity at the ground- and excited-state geometry.

8.
J Am Chem Soc ; 143(24): 9048-9059, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34075753

RESUMO

The development of next-generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evident for CsPbBr3 perovskites that the Pb-Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work, we demonstrate that the photoinduced lattice changes in the system are due to a specific polaronic distortion, associated with the activation of a longitudinal optical phonon mode at 18 meV by electron-phonon coupling, and we quantify the associated structural changes with atomic-level precision. Key to this achievement is the combination of time-resolved and temperature-dependent studies at Br K and Pb L3 X-ray absorption edges with refined ab initio simulations, which fully account for the screened core-hole final state effects on the X-ray absorption spectra. From the temporal kinetics, we show that carrier recombination reversibly unlocks the structural deformation at both Br and Pb sites. The comparison with the temperature-dependent XAS results rules out thermal effects as the primary source of distortion of the Pb-Br bonding motif during photoexcitation. Our work provides a comprehensive description of the CsPbBr3 perovskites' photophysics, offering novel insights on the light-induced response of the system and its exceptional optoelectronic properties.

9.
Rev Sci Instrum ; 91(10): 105109, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33138597

RESUMO

We present an approach to determine the absolute thickness profile of flat liquid jets, which takes advantage of the information of thin film interference combined with light absorption, both captured in a single microscopic image. The feasibility of the proposed method is demonstrated on our compact experimental setup used to generate micrometer thin, free-flowing liquid jet sheets upon collision of two identical laminar cylindrical jets. Stable operation was achieved over several hours of the flat jet in vacuum (10-4 mbar), making the system ideally suitable for soft x-ray photon spectroscopy of liquid solutions. We characterize the flat jet size and thickness generated with two solvents, water and ethanol, employing different flow rates and nozzles of variable sizes. Our results show that a gradient of thickness ranging from a minimal thickness of 2 µm to over 10 µm can be found within the jet surface area. This enables the tunability of the sample thickness in situ, allowing the optimization of the transmitted photon flux for the chosen photon energy and sample. We demonstrate the feasibility of x-ray absorption spectroscopy experiments in transmission mode by measuring at the oxygen K-edge of ethanol. Our characterization method and the description of the experimental setup and its reported performance are expected to expand the range of applications and facilitate the use of flat liquid jets for spectroscopy experiments.

10.
Phys Rev Lett ; 125(7): 073203, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857563

RESUMO

Free-electron lasers provide a source of x-ray pulses short enough and intense enough to drive nonlinearities in molecular systems. Impulsive interactions driven by these x-ray pulses provide a way to create and probe valence electron motions with high temporal and spatial resolution. Observing these electronic motions is crucial to understand the role of electronic coherence in chemical processes. A simple nonlinear technique for probing electronic motion, impulsive stimulated x-ray Raman scattering (ISXRS), involves a single impulsive interaction to produce a coherent superposition of electronic states. We demonstrate electronic population transfer via ISXRS using broad bandwidth (5.5 eV full width at half maximum) attosecond x-ray pulses produced by the Linac Coherent Light Source. The impulsive excitation is resonantly enhanced by the oxygen 1s→2π^{*} resonance of nitric oxide (NO), and excited state neutral molecules are probed with a time-delayed UV laser pulse.

11.
Nat Commun ; 11(1): 167, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919346

RESUMO

Intense x-ray free-electron laser (XFEL) pulses hold great promise for imaging function in nanoscale and biological systems with atomic resolution. So far, however, the spatial resolution obtained from single shot experiments lags averaging static experiments. Here we report on a combined computational and experimental study about ultrafast diffractive imaging of sucrose clusters which are benchmark organic samples. Our theoretical model matches the experimental data from the water window to the keV x-ray regime. The large-scale dynamic scattering calculations reveal that transient phenomena driven by non-linear x-ray interaction are decisive for ultrafast imaging applications. Our study illuminates the complex interplay of the imaging process with the rapidly changing transient electronic structures in XFEL experiments and shows how computational models allow optimization of the parameters for ultrafast imaging experiments.

12.
Phys Chem Chem Phys ; 22(5): 2704-2712, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31793561

RESUMO

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

13.
J Synchrotron Radiat ; 26(Pt 6): 1956-1966, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721741

RESUMO

The full radiation from the first harmonic of a synchrotron undulator (between 5 and 12 keV) at the Advanced Photon Source is microfocused using a stack of beryllium compound refractive lenses onto a fast-moving liquid jet and overlapped with a high-repetition-rate optical laser. This micro-focused geometry is used to perform efficient nonresonant X-ray emission spectroscopy on transient species using a dispersive spectrometer geometry. The overall usable flux achieved on target is above 1015 photons s-1 at 8 keV, enabling photoexcited systems in the liquid phase to be tracked with time resolutions from tens of picoseconds to microseconds, and using the full emission spectrum, including the weak valence-to-core signal that is sensitive to chemically relevant electronic properties.

14.
J Chem Phys ; 151(14): 144306, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615248

RESUMO

Ligand substitution reactions are common in solvated transition metal complexes, and harnessing them through initiation with light promises interesting practical applications, driving interest in new means of probing their mechanisms. Using a combination of time-resolved x-ray absorption spectroscopy and hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations and x-ray absorption near-edge spectroscopy calculations, we elucidate the mechanism of photoaquation in the model system iron(ii) hexacyanide, where UV excitation results in the exchange of a CN- ligand with a water molecule from the solvent. We take advantage of the high flux and stability of synchrotron x-rays to capture high precision x-ray absorption spectra that allow us to overcome the usual limitation of the relatively long x-ray pulses and extract the spectrum of the short-lived intermediate pentacoordinated species. Additionally, we determine its lifetime to be 19 (±5) ps. The QM/MM simulations support our experimental findings and explain the ∼20 ps time scale for aquation as involving interconversion between the square pyramidal (SP) and trigonal bipyramidal pentacoordinated geometries, with aquation being only active in the SP configuration.

15.
Struct Dyn ; 4(4): 044002, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28083541

RESUMO

We report on an element-selective study of the fate of charge carriers in photoexcited inorganic CsPbBr3 and CsPb(ClBr)3 perovskite nanocrystals in toluene solutions using time-resolved X-ray absorption spectroscopy with 80 ps time resolution. Probing the Br K-edge, the Pb L3-edge, and the Cs L2-edge, we find that holes in the valence band are localized at Br atoms, forming small polarons, while electrons appear as delocalized in the conduction band. No signature of either electronic or structural changes is observed at the Cs L2-edge. The results at the Br and Pb edges suggest the existence of a weakly localized exciton, while the absence of signatures at the Cs edge indicates that the Cs+ cation plays no role in the charge transport, at least beyond 80 ps. This first, time-resolved element-specific study of perovskites helps understand the rather modest charge carrier mobilities in these materials.

16.
Proc Natl Acad Sci U S A ; 112(18): 5602-6, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902517

RESUMO

It was recently demonstrated that in ferric myoglobins (Mb) the fluorescence quenching of the photoexcited tryptophan 14 (*Trp(14)) residue is in part due to an electron transfer to the heme porphyrin (porph), turning it to the ferrous state. However, the invariance of *Trp decay times in ferric and ferrous Mbs raises the question as to whether electron transfer may also be operative in the latter. Using UV pump/visible probe transient absorption, we show that this is indeed the case for deoxy-Mb. We observe that the reduction generates (with a yield of about 30%) a low-valence Fe-porphyrin π [Fe(II)(porph(●-))] -anion radical, which we observe for the first time to our knowledge under physiological conditions. We suggest that the pathway for the electron transfer proceeds via the leucine 69 (Leu(69)) and valine 68 (Val(68)) residues. The results on ferric Mbs and the present ones highlight the generality of Trp-porphyrin electron transfer in heme proteins.


Assuntos
Compostos Ferrosos/química , Heme/química , Mioglobina/química , Triptofano/química , Algoritmos , Transporte de Elétrons , Compostos Férricos/química , Cinética , Leucina/química , Modelos Químicos , Modelos Moleculares , Porfirinas/química , Estrutura Terciária de Proteína , Espectrofotometria , Valina/química
17.
Phys Chem Chem Phys ; 17(3): 2143-51, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25483569

RESUMO

The ultrafast response of cytochrome bc1 is investigated for the first time, via transient absorption spectroscopy. The distinct redox potentials of both c1- and b-hemes allow for a clear differentiation of their respective signals. We find that while the c1-heme photo-product exhibits the characteristics of a 5-coordinated species, the b-hemes presumably undergo photo-oxidation at a remarkably high quantum yield. The c1-heme iron-ligand recombination time is 5.4 ps, in agreement with previous reports on homologous cytochromes. The suggested photo-oxidized state of the b-hemes has a life-time of 6.8 ps. From this short life-time we infer that the electron acceptor must be within van der Walls contact with the heme, which points to the fact that the axial histidine residue is the electron acceptor. The different heme-responses illustrate the flexibility of the c1-heme ligation in contrast to the more rigid b-heme binding, as well as the higher electronic reactivity of the b-hemes within the bc1 complex. This study also demonstrates the remarkable connection between the heme local environment and its dynamics and, therefore, biological function.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Heme/química , Luz , Heme/metabolismo , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...