Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686072

RESUMO

The role of neutrophils in breast cancer shows that the N1 proinflammatory subtype can suppress and attack the tumor. In contrast, the N2 pro-tumor subtype aids the tumor in its survival, progression, and metastasis. Recently, more focus has been directed to the role of innate myeloid cells, specifically neutrophils, in regulating the responses of lymphoid populations both in the progression of cancer and in response to therapy. However, the exact crosstalk between breast cancer cells and neutrophils is poorly understood. In this work, we used in-silico assays to investigate the role of the bidirectional effect of neutrophils on metastatic TNBC. Our reanalysis of publicly available data reveals that most TNBC's classified within the CE2 subtype are leukocyte-poor and have four major cell types in their ecotypes: dendritic cells, macrophages, fibroblasts, and epithelial cells. Further immune deconvolution of these patients revealed that a few cells significantly differed between groups, including macrophages, neutrophils, and T cells. All BC showed lower infiltrating neutrophils compared to healthy surrounding tissue. Treated TNBCs improved the count of infiltrating neutrophils in TNBC. Most TNBC patients have a unique CE2 ecotype, characterized by more basal-like epithelial cells, more neutrophils, and fewer mononuclear lymphocytes (B cells, macrophages M1, T cell CD4+ (non-regulatory), and T cell CD8+ and T regs). This can be related to our finding that CE2 TNBCs are characterized by a lower LCK and higher ERBB2, and their top DEGs are related to leukocyte activation and NFKB pathway.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Neutrófilos , Neoplasias de Mama Triplo Negativas , Humanos , Apresentação de Antígeno , Linfócitos B , Leucócitos , Neoplasias de Mama Triplo Negativas/genética
2.
Drug Des Devel Ther ; 10: 3109-3123, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27729770

RESUMO

Polypharmacology, the discovery or design of drug molecules that can simultaneously interact with multiple targets, is gaining interest in contemporary drug discovery. Serine/threonine kinases are attractive targets for therapeutic intervention in oncology due to their role in cellular phosphorylation and altered expression in cancer. Quercetin, a naturally occurring flavonoid, inhibits multiple cancer cell lines and is used as an anticancer drug in Phase I clinical trial. Quercetin glycosides have also received some attention due to their high bioavailability and activity against various diseases including cancer. However, these have been studied to a lesser extent. In this study, the structural basis of the multitarget inhibitory activity of quercetin and isoquercitrin, a glycoside derivative, on serine/threonine kinases using molecular modeling was explored. Structural analysis showed that both quercetin and isoquercitrin exhibited good binding energies and interacted with aspartate in the highly conserved Asp-Phe-Gly motif. The results indicate that isoquercitrin could be a more potent inhibitor of several members of the serine/threonine kinase family. In summary, the current structural evaluation highlights the multitarget inhibitory property of quercetin and its potential to be a chemical platform for oncological polypharmacology.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Quercetina/farmacologia , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Quercetina/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA