Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EFSA J ; 21(4): e06857, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37089179

RESUMO

In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 µg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.

2.
J Pharmacol Exp Ther ; 356(2): 434-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26582732

RESUMO

Parkinson's disease is frequently associated with gastrointestinal symptoms, mostly represented by constipation and defecatory dysfunctions. This study examined the impact of central dopaminergic denervation, induced by injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, on distal colonic excitatory cholinergic neuromotor activity in rats. Animals were euthanized 4 and 8 weeks after 6-OHDA injection. In vivo colonic transit was evaluated by radiologic assay. Electrically induced and carbachol-induced cholinergic contractions were recorded in vitro from longitudinal and circular muscle colonic preparations, whereas acetylcholine levels were assayed in the incubation media. Choline acetyltransferase (ChAT), HuC/D (pan-neuronal marker), muscarinic M2 and M3 receptors were assessed by immunohistochemistry or western blot assay. As compared with control rats, at week 4, 6-OHDA-treated animals displayed the following changes: decreased in vivo colonic transit rate, impaired electrically evoked neurogenic cholinergic contractions, enhanced carbachol-induced contractions, decreased basal and electrically stimulated acetylcholine release from colonic tissues, decreased ChAT immunopositivity in the neuromuscular layer, unchanged density of HuC/D immunoreactive myenteric neurons, and increased expression of colonic muscarinic M2 and M3 receptors. The majority of such alterations were also detected at week 8 post 6-OHDA injection. These findings indicate that central nigrostriatal dopaminergic denervation is associated with an impaired excitatory neurotransmission characterized by a loss of myenteric neuronal ChAT positivity and decrease in acetylcholine release, resulting in a dysregulated smooth muscle motor activity, which likely contributes to the concomitant decrease in colonic transit rate.


Assuntos
Acetilcolina/metabolismo , Colo/diagnóstico por imagem , Colo/metabolismo , Sistema Nervoso Entérico/diagnóstico por imagem , Sistema Nervoso Entérico/metabolismo , Motilidade Gastrointestinal/fisiologia , Transtornos Parkinsonianos/diagnóstico por imagem , Animais , Neurônios Colinérgicos/diagnóstico por imagem , Neurônios Colinérgicos/metabolismo , Masculino , Técnicas de Cultura de Órgãos , Radiografia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
3.
J Pharmacol Toxicol Methods ; 70(2): 163-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25117630

RESUMO

INTRODUCTION: Gastrointestinal (GI) motility disorders include many clinical manifestations associated with various pathologies. They are widespread and can be considered a primary symptom or can be associated to other diseases, such as Parkinson's disease. Understanding the type and site of GI dysmotility is crucial to identify the functional abnormality and to unravel the underlying mechanisms, in order to design adequate therapeutic interventions. METHODS: In the present study, we applied radiological analysis, a common tool in clinical practice, to follow up in vivo the progression of GI dysmotility over time and along the entire GI tract in an animal model of central nervous dopaminergic degeneration and compared these results to those obtained with standard techniques commonly used to assess GI motor functions in small rodents. RESULTS: Our radiological data, showing delayed gastric emptying and constipation, agree with and expand previous information obtained with other functional assays in the same model, suggesting that radiological analysis can be an appropriate method to explore GI dysmotility in animal models of human pathologies. DISCUSSION: In this study we have applied for the first time the GI radiological analysis to an animal model of central nervous dopaminergic degeneration providing a non-invasive/animal-preserving approach, ethically more acceptable and useful to follow up the development of GI dysmotility in pathologies evolving over time.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Gastroenteropatias/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/metabolismo , Masculino , Oxidopamina , Radiografia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...