Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; : 117180, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944098

RESUMO

Recent research has revealed several important pathways of epigenetic regulation leading to transcriptional changes in bone cells. Rest Corepressor 2 (Rcor2) is a coregulator of Lysine-specific histone demethylase 1 (Lsd1), a demethylase linked to osteoblast activity, hematopoietic stem cell differentiation and malignancy of different neoplasms. However, the role of Rcor2 in osteoblast differentiation has not yet been examined in detail. We have previously shown that Rcor2 is highly expressed in mesenchymal stromal cells (MSC) and particularly in the osteoblastic lineage. The role of Rcor2 in osteoblastic differentiation in vitro was further characterized and we demonstrate here that lentiviral silencing of Rcor2 in MC3T3-E1 cells led to a decrease in osteoblast differentiation. This was indicated by decreased alkaline phosphatase and von Kossa stainings as well as by decreased expression of several osteoblast-related marker genes. RNA-sequencing of the Rcor2-downregulated MC3T3-E1 cells showed decreased repression of Rcor2 target genes, as well as significant upregulation of majority of the differentially expressed genes. While the heterozygous, global loss of Rcor2 in vivo did not lead to a detectable bone phenotype, conditional deletion of Rcor2 in limb-bud mesenchymal cells led to a moderate decrease in cortical bone volume. These findings were not accentuated by challenging bone formation by ovariectomy or tibial fracture. Furthermore, a global deletion of Rcor2 led to decreased white adipose tissue in vivo and decreased the capacity of primary cells to differentiate into adipocytes in vitro. The conditional deletion of Rcor2 led to decreased adiposity in fracture callus. Taken together, these results suggest that epigenetic regulation of mesenchymal stromal cell differentiation is mediated by Rcor2, which could thus play an important role in defining the MSC fate.

2.
PLoS One ; 17(3): e0265027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35255108

RESUMO

Epigenetic mechanisms regulate osteogenic lineage differentiation of mesenchymal stromal cells. Histone methylation is controlled by multiple lysine demethylases and is an important step in controlling local chromatin structure and gene expression. Here, we show that the lysine-specific histone demethylase Kdm1A/Lsd1 is abundantly expressed in osteoblasts and that its suppression impairs osteoblast differentiation and bone nodule formation in vitro. Although Lsd1 knockdown did not affect global H3K4 methylation levels, genome-wide ChIP-Seq analysis revealed high levels of Lsd1 at gene promoters and its binding was associated with di- and tri-methylation of histone 3 at lysine 4 (H3K4me2 and H3K4me3). Lsd1 binding sites in osteoblastic cells were enriched for the Runx2 consensus motif suggesting a functional link between the two proteins. Importantly, inhibition of Lsd1 activity decreased osteoblast activity in vivo. In support, mesenchymal-targeted knockdown of Lsd1 led to decreased osteoblast activity and disrupted primary spongiosa ossification and reorganization in vivo. Together, our studies demonstrate that Lsd1 occupies Runx2-binding cites at H3K4me2 and H3K4me3 and its activity is required for proper bone formation.


Assuntos
Histonas , Osteogênese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética
3.
Curr Opin Ophthalmol ; 32(2): 148-159, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33315724

RESUMO

PURPOSE OF REVIEW: Mitomycin C (MMC) is an alkylating agent with extraordinary ability to crosslink DNA, preventing DNA synthesis. By this virtue, MMC is an important antitumor drug. In addition, MMC has become the gold standard medication for glaucoma filtration surgery (GFS). This eye surgery creates a passage for drainage of aqueous humor (AqH) out of the eye into the sub-Tenon's space with the aim of lowering the intraocular pressure. A major cause of failure of this operation is fibrosis and scarring in the sub-Tenon's space, which will restrict AqH outflow. Intraoperative application of MMC during GFS has increased GFS success rate, presumably mainly by reducing fibrosis after GFS. However, still 10% of glaucoma surgeries fail within the first year. RECENT FINDINGS: In this review, we evaluate risks and benefits of MMC as an adjuvant for GFS. In addition, we discuss possible improvements of its use by adjusting dose and method of administration. SUMMARY: One way of improving GFS outcome is to prolong MMC delivery by using a drug delivery system.


Assuntos
Alquilantes/administração & dosagem , Alquilantes/história , Cirurgia Filtrante , Glaucoma/cirurgia , Mitomicina/administração & dosagem , Mitomicina/história , Esclera/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Fibrose/prevenção & controle , Glaucoma/fisiopatologia , História do Século XX , História do Século XXI , Humanos , Pressão Intraocular/fisiologia
4.
J Cereb Blood Flow Metab ; 37(8): 2870-2882, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27834284

RESUMO

Preclinical animal model studies of brain energy metabolism and neuroinflammation in Alzheimer's disease have produced conflicting results, hampering both the elucidation of the underlying disease mechanism and the development of effective Alzheimer's disease therapies. Here, we aimed to quantify the relationship between brain energy metabolism and neuroinflammation in the APP/PS1-21 transgenic mouse model of Alzheimer's disease using longitudinal in vivo18F-FDG and 18F-DPA-714) PET imaging and ex vivo brain autoradiography. APP/PS1-21 (TG, n = 9) and wild type control mice (WT, n = 9) were studied longitudinally every third month from age 6 to 15 months with 18F-FDG and 18F-DPA-714 with a one-week interval between the scans. Additional TG (n = 52) and WT (n = 29) mice were used for ex vivo studies. In vivo, the 18F-FDG SUVs were lower and the 18F-DPA-714 binding ratios relative to the cerebellum were higher in the TG mouse cortex and hippocampus than in WT mice at age 12 to 15 months ( p < 0.05). The ex vivo cerebellum binding ratios supported the results of the in vivo18F-DPA-714 studies but not the 18F-FDG studies. This longitudinal PET study demonstrated decreased energy metabolism and increased inflammation in the brains of APP/PS1-21 mice compared to WT mice.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer , Encéfalo , Encefalite , Metabolismo Energético , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encefalite/diagnóstico por imagem , Encefalite/metabolismo , Glucose-6-Fosfato/análogos & derivados , Camundongos Transgênicos , Presenilina-1/genética , Pirazóis , Pirimidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...