Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 8833, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893334

RESUMO

Protein tyrosine phosphatase receptor gamma (PTPRG) is a member of the receptor-like family protein tyrosine phosphatases and acts as a tumor suppressor gene in different neoplasms. Recent studies reported the down-regulation of PTPRG expression levels in Chronic Myeloid Leukemia disease (CML). In addition, the BCR-ABL1 transcript level is currently a key predictive biomarker of CML response to treatment with Tyrosine Kinase Inhibitors (TKIs). The aim of this study was to employ flow cytometry to monitor the changes in the expression level of PTPRG in the white blood cells (WBCs) of CML patients at the time of diagnosis and following treatment with TKIs. WBCs from peripheral blood of 21 CML patients were extracted at diagnosis and during follow up along with seven healthy individuals. The PTPRG expression level was determined at protein and mRNA levels by both flow cytometry with monoclonal antibody (TPγ B9-2) and RT-qPCR, and BCR-ABL1 transcript by RT-qPCR, respectively. PTPRG expression was found to be lower in the neutrophils and monocytes of CML patients at time of diagnosis compared to healthy individuals. Treatment with TKIs nilotinib and Imatinib Mesylate restored the expression of PTPRG in the WBCs of CML patients to levels observed in healthy controls. Moreover, restoration levels were greatest in optimal responders and occurred earlier with nilotinib compared to imatinib. Our results support the measurement of PTPRG expression level in the WBCs of CML patients by flow cytometry as a monitoring tool for the response to treatment with TKIs in CML patients.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Adulto , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Linfócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resultado do Tratamento
2.
Mol Genet Genomic Med ; 8(10): e1319, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32700424

RESUMO

BACKGROUND: Several studies showed that aberrant DNA methylation is involved in leukemia and cancer pathogenesis. Protein tyrosine phosphatase receptor gamma (PTPRG) expression is a natural inhibitory mechanism that is downregulated in chronic myeloid leukemia (CML) disease. The mechanism behind its downregulation has not been fully elucidated yet. AIM: This study aimed to investigate the CpG methylation status at the PTPRG locus in CML patients. METHODS: Peripheral blood samples from CML patients at time of diagnosis [no tyrosine kinase inhibitors (TKIs)] (n = 13), failure to (TKIs) treatment (n = 13) and healthy controls (n = 6) were collected. DNA was extracted and treated with bisulfite treatment, followed by PCR, sequencing of 25 CpG sites in the promoter region and 26 CpG sites in intron-1 region of PTPRG. The bisulfite sequencing technique was employed as a high-resolution method. RESULTS: CML groups (new diagnosed and failed treatment) showed significantly higher methylation levels in the promoter and intron-1 regions of PTPRG compared to the healthy group. There were also significant differences in methylation levels of CpG sites in the promoter and intron-1 regions amongst the groups. CONCLUSION: Aberrant methylation of PTPRG is potentially one of the possible mechanisms of PTPRG downregulation detected in CML.


Assuntos
Metilação de DNA , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Adulto , Ilhas de CpG , Feminino , Humanos , Íntrons , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/sangue
3.
J Hematol Oncol ; 10(1): 129, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637510

RESUMO

BACKGROUND: Protein tyrosine phosphatase receptor gamma (PTPRG) is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML) have been reported, only one polyclonal antibody (named chPTPRG) has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2) to better define PTPRG protein downregulation in CML patients. METHODS: TPγ B9-2 specifically recognizes PTPRG (both human and murine) by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. RESULTS: Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34+/CD38bright/dim cells). After effective tyrosine kinase inhibitor (TKI) treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI) non-responder patients, confirming that downregulation selectively occurs in primary CML cells. CONCLUSIONS: The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the availability of a specific reagent capable to specifically detect its target in various experimental conditions.


Assuntos
Anticorpos Monoclonais/análise , Imuno-Histoquímica/métodos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/análise , Animais , Anticorpos Monoclonais/imunologia , Western Blotting , Regulação para Baixo , Regulação Leucêmica da Expressão Gênica , Humanos , Imunoprecipitação , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/imunologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...