Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 10(1): 50, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728068

RESUMO

BACKGROUND: Mesenchymal stem cells derived from the chorionic villi of human placentae (pMSCs) produce a unique array of mediators that regulate the essential cellular functions of their target cells. These properties make pMSCs attractive candidates for cell-based therapy. Here, we examined the effects of culturing human natural killer (NK) cells with pMSCs on NK cell functions. METHODS: pMSCs were cultured with IL-2-activated and non-activated NK cells. NK cell proliferation and cytolytic activities were monitored. NK cell expression of receptors mediating their cytolytic activity against pMSCs, and the mechanisms underlying this effect on pMSCs, were also investigated. RESULTS: Our findings show that IL-2-activated NK cells, but not freshly isolated NK cells, efficiently lyse pMSCs and that this response might involve the activating NK cell receptor CD69. Interestingly, although pMSCs expressed HLA class I molecules, they were nevertheless lysed by NK cells, suggesting that HLA class I antigens do not play a significant role in protecting pMSCs from NK cell cytolytic activity. Co-culturing NK cells with pMSCs also inhibited NK cell expression of receptors, including CD69, NKpG2D, CD94, and NKp30, although these co-cultured NK cells were not inhibited in lysing cancer cells in vitro. Importantly, co-cultured NK cells significantly increased their production of molecules with anti-tumor effects. CONCLUSIONS: These findings suggest that pMSCs might have potential applications in cancer therapy.


Assuntos
Vilosidades Coriônicas/metabolismo , Células Matadoras Naturais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Proliferação de Células , Humanos
2.
Stem Cell Res Ther ; 9(1): 238, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241570

RESUMO

BACKGROUND: Mesenchymal stem/stromal cells derived from chorionic villi of human term placentae (pMSCs) protect human endothelial cells from injury induced by hydrogen peroxide (H2O2). In diabetes, elevated levels of glucose (hyperglycaemia) induce H2O2 production, which causes the endothelial dysfunction that underlies the enhanced immune responses and adverse complications associated with diabetes, which leads to thrombosis and atherosclerosis. In this study, we examined the ability of pMSCs to protect endothelial cell functions from the negative impact of high level of glucose. METHODS: pMSCs isolated from the chorionic villi of human term placentae were cultured with endothelial cells isolated from human umbilical cord veins in the presence of glucose. Endothelial cell functions were then determined. The effect of pMSCs on gene expression in glucose-treated endothelial cells was also determined. RESULTS: pMSCs reversed the effect of glucose on key endothelial cell functions including proliferation, migration, angiogenesis, and permeability. In addition, pMSCs altered the expression of many genes that mediate important endothelial cell functions including survival, apoptosis, adhesion, permeability, and angiogenesis. CONCLUSIONS: This is the first comprehensive study to provide evidence that pMSCs protect endothelial cells from glucose-induced damage. Therefore, pMSCs have potential therapeutic value as a stem cell-based therapy to repair glucose-induced vascular injury and prevent the adverse complications associated with diabetes and cardiovascular disease. However, further studies are necessary to reveal more detailed aspects of the mechanism of action of pMSCs on glucose-induced endothelial damage in vitro and in vivo.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Apoptose/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocinas/genética , Quimiocinas/metabolismo , Vilosidades Coriônicas/metabolismo , Técnicas de Cocultura , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Combinação de Medicamentos , Endotelinas/genética , Endotelinas/metabolismo , Feminino , Glucose/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Laminina/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Gravidez , Proteoglicanas/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Células THP-1 , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo
3.
Stem Cells Int ; 2018: 6480793, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29795719

RESUMO

Stem cell-based therapies rely on stem cell ability to repair in an oxidative stress environment. Preconditioning of mesenchymal stem cells (MSCs) to a stress environment has beneficial effects on their ability to repair injured tissues. We previously reported that MSCs from the decidua basalis (DBMSCs) of human placenta have many important cellular functions that make them potentially useful for cell-based therapies. Here, we studied the effect of DBMSC preconditioning to a stress environment. DBMSCs were exposed to various concentrations of hydrogen peroxide (H2O2), and their functions were then assessed. DBMSC expression of immune molecules after preconditioning was also determined. DBMSC preconditioning with H2O2 enhanced their proliferation, colonogenicity, adhesion, and migration. In addition, DBMSCs regardless of H2O2 treatment displayed antiangiogenic activity. H2O2 preconditioning also increased DBMSC expression of genes that promote cellular functions and decreased the expression of genes, which have opposite effect on their functions. Preconditioning also reduced DBMSC expression of IL-1ß, but had no effects on the expression of other immune molecules that promote proliferation, adhesion, and migration. These data show that DBMSCs resist a toxic environment, which adds to their potential as a candidate stem cell type for treating various diseases in hostile environments.

4.
Stem Cells Int ; 2016: 5184601, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27087815

RESUMO

Mesenchymal stem cell (MSC) therapies for the treatment of diseases associated with inflammation and oxidative stress employ primarily bone marrow MSCs (BMMSCs) and other MSC types such as MSC from the chorionic villi of human term placentae (pMSCs). These MSCs are not derived from microenvironments associated with inflammation and oxidative stress, unlike MSCs from the decidua basalis of the human term placenta (DBMSCs). DBMSCs were isolated and then extensively characterized. Differentiation of DBMSCs into three mesenchymal lineages (adipocytes, osteocytes, and chondrocytes) was performed. Real-time polymerase chain reaction (PCR) and flow cytometry techniques were also used to characterize the gene and protein expression profiles of DBMSCs, respectively. In addition, sandwich enzyme-linked immunosorbent assay (ELISA) was performed to detect proteins secreted by DBMSCs. Finally, the migration and proliferation abilities of DBMSCs were also determined. DBMSCs were positive for MSC markers and HLA-ABC. DBMSCs were negative for hematopoietic and endothelial markers, costimulatory molecules, and HLA-DR. Functionally, DBMSCs differentiated into three mesenchymal lineages, proliferated, and migrated in response to a number of stimuli. Most importantly, these cells express and secrete a distinct combination of cytokines, growth factors, and immune molecules that reflect their unique microenvironment. Therefore, DBMSCs could be attractive, alternative candidates for MSC-based therapies that treat diseases associated with inflammation and oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA