Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(31): 11047-11054, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35894588

RESUMO

The hemicyanine hybrid containing the 7-(diethylamino)coumarin (ACou) donor attached to the cationic indolenium (Ind) acceptor through a vinyl linkage (ACou-Ind) represents a classic ratiometric fluorescent probe for detecting nucleophilic analytes, such as cyanide and reactive sulfur species (RSS), through addition reactions that disrupt dye conjugation to turn off red internal charge transfer (ICT) fluorescence and turn on blue coumarin emission. The chemosensing mechanism for RSS detection by ACou-Ind suggested in the literature has now been revised. Our studies demonstrate that thiolates react with ACou-Ind through conjugate addition to afford C4-SR adducts that lack coumarin fluorescence due to photoinduced electron transfer quenching by the electron-rich enamine intermediate. Thus, ACou-Ind serves as a turn-off probe through loss of red ICT fluorescence upon RSS addition. The literature also suggests that blue coumarin emission of thiolate adducts is enhanced in the presence of reactive oxygen species (ROS) due to ROS-mediated cellular changes. Our studies predict that such a scenario is unlikely and that thiolate adducts undergo oxidative deconjugation in the presence of H2O2, the pervasive ROS. Under basic conditions, H2O2 also reacts directly with ACou-Ind to generate intense coumarin fluorescence through an epoxidation process. The relevance of our chemosensing mechanism for ACou-Ind was assessed within live zebrafish, and implications for the utility of ACou-Ind for unraveling the interplay between RSS and ROS are discussed.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Animais , Carbocianinas , Cumarínicos , Espécies Reativas de Oxigênio , Peixe-Zebra
2.
Plant J ; 109(3): 693-707, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34786774

RESUMO

This study focuses on the biosynthesis of a suite of specialized metabolites from Cannabis that are known as the 'bibenzyls'. In planta, bibenzyls accumulate in response to fungal infection and various other biotic stressors; however, it is their widely recognized anti-inflammatory properties in various animal cell models that have garnered recent therapeutic interest. We propose that these compounds are synthesized via a branch point from the core phenylpropanoid pathway in Cannabis, in a three-step sequence. First, various hydroxycinnamic acids are esterified to acyl-coenzyme A (CoA) by a member of the 4-coumarate-CoA ligase family (Cs4CL4). Next, these CoA esters are reduced by two double-bond reductases (CsDBR2 and CsDBR3) that form their corresponding dihydro-CoA derivatives from preferred substrates. Finally, the bibenzyl backbone is completed by a polyketide synthase that specifically condenses malonyl-CoA with these dihydro-hydroxycinnamoyl-CoA derivatives to form two bibenzyl scaffolds: dihydropiceatannol and dihydroresveratrol. Structural determination of this 'bibenzyl synthase' enzyme (CsBBS2) indicates that a narrowing of the hydrophobic pocket surrounding the active site evolved to sterically favor the non-canonical and more flexible dihydro-hydroxycinnamoyl-CoA substrates in comparison with their oxidized relatives. Accordingly, three point mutations that were introduced into CsBBS2 proved sufficient to restore some enzymatic activity with an oxidized substrate, in vitro. Together, the identification of this set of Cannabis enzymes provides a valuable contribution to the growing 'parts prospecting' inventory that supports the rational metabolic engineering of natural product therapeutics.


Assuntos
Bibenzilas/metabolismo , Vias Biossintéticas/genética , Cannabis/genética , Cannabis/metabolismo , Anti-Inflamatórios/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
3.
J Biol Chem ; 297(5): 101308, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34673030

RESUMO

The design of allosteric modulators to control protein function is a key objective in drug discovery programs. Altering functionally essential allosteric residue networks provides unique protein family subtype specificity, minimizes unwanted off-target effects, and helps avert resistance acquisition typically plaguing drugs that target orthosteric sites. In this work, we used protein engineering and dimer interface mutations to positively and negatively modulate the immunosuppressive activity of the proapoptotic human galectin-7 (GAL-7). Using the PoPMuSiC and BeAtMuSiC algorithms, mutational sites and residue identity were computationally probed and predicted to either alter or stabilize the GAL-7 dimer interface. By designing a covalent disulfide bridge between protomers to control homodimer strength and stability, we demonstrate the importance of dimer interface perturbations on the allosteric network bridging the two opposite glycan-binding sites on GAL-7, resulting in control of induced apoptosis in Jurkat T cells. Molecular investigation of G16X GAL-7 variants using X-ray crystallography, biophysical, and computational characterization illuminates residues involved in dimer stability and allosteric communication, along with discrete long-range dynamic behaviors involving loops 1, 3, and 5. We show that perturbing the protein-protein interface between GAL-7 protomers can modulate its biological function, even when the overall structure and ligand-binding affinity remains unaltered. This study highlights new avenues for the design of galectin-specific modulators influencing both glycan-dependent and glycan-independent interactions.


Assuntos
Apoptose , Galectinas , Tolerância Imunológica , Multimerização Proteica , Linfócitos T/imunologia , Regulação Alostérica , Apoptose/genética , Apoptose/imunologia , Galectinas/química , Galectinas/genética , Galectinas/imunologia , Humanos , Células Jurkat , Multimerização Proteica/genética , Multimerização Proteica/imunologia
4.
Front Pharmacol ; 12: 696461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413776

RESUMO

Mitragyna speciosa ("kratom"), employed as a traditional medicine to improve mood and relieve pain, has shown increased use in Europe and North America. Here, the dose-dependent effects of a purified alkaloid kratom extract on neuronal oscillatory systems function, analgesia, and antidepressant-like behaviour were evaluated and kratom-induced changes in ΔFosB expression determined. Male rats were administered a low or high dose of kratom (containing 0.5 or 1 mg/kg of mitragynine, respectively) for seven days. Acute or repeated low dose kratom suppressed ventral tegmental area (VTA) theta oscillatory power whereas acute or repeated high dose kratom increased delta power, and reduced theta power, in the nucleus accumbens (NAc), prefrontal cortex (PFC), cingulate cortex (Cg) and VTA. The repeated administration of low dose kratom additionally elevated delta power in PFC, decreased theta power in NAc and PFC, and suppressed beta and low gamma power in Cg. Suppressed high gamma power in NAc and PFC was seen selectively following repeated high dose kratom. Both doses of kratom elevated NAc-PFC, VTA-NAc, and VTA-Cg coherence. Low dose kratom had antidepressant-like properties whereas both doses produced analgesia. No kratom-induced changes in ΔFosB expression were evident. These results support a role for kratom as having both antidepressant and analgesic properties that are accompanied by specific changes in neuronal circuit function. However, the absence of drug-induced changes in ΔFosB expression suggest that the drug may circumvent this cellular signaling pathway, a pathway known for its significant role in addiction.

5.
J Org Chem ; 86(2): 1583-1590, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33356262

RESUMO

Merocyanine (MC) dyes containing an aromatic donor vinyl linked to a cationic acceptor serve as chemosensors for analyte detection. Their electrophilicity permits anion detection through addition reactions that disrupt dye conjugation. Herein, we demonstrate the temperature influence on thiolate addition to MCs containing the N-methylbenzothiazolium (Btz) acceptor. The zwitterionic phenolate dye (PhOBtz) displays impressive temperature sensitivity to thiolate addition, with the brightly colored phenolate favored upon heating and the colorless thiolate adduct favored upon cooling. In contrast, MC dyes containing neutral donors (PhOMeBtz and PhNMe2Btz) display only moderate temperature sensitivity to thiolate capture and release. Extraction of thermodynamic parameters demonstrates a strong enthalpic driving force for thiolate addition to PhOBtz that is absent for PhOMeBtz and PhNMe2Btz. Variable temperature 1H NMR studies demonstrate that PhOBtz adopts the para-quinone methide (p-QM) resonance structure. Thus, thiolate addition to PhOBtz resembles 1,6-conjugate addition to p-QMs which is accompanied by a large increase in the π-stabilization energy upon adduct formation. Manipulation of PhOBtz electrophilicity by attaching chlorine substituents to the phenolate caused the thiolate adducts to dissipate over time for p-QM regeneration. Our work provides new design ideas for the utility of phenolate MC dyes, given that they are carriers of the p-QM electrophile.

6.
Curr Protoc Chem Biol ; 12(3): e83, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805089

RESUMO

Metabolomic studies allow a deeper understanding of the processes of a given ecological community than nucleic acid-based surveys alone. In the case of the gut microbiota, a metabolic profile of, for example, a fecal sample provides details about the function and interactions within the distal region of the gastrointestinal tract, and such a profile can be generated in a number of different ways. This unit elaborates on the use of 1D 1 H NMR spectroscopy as a commonly used method to characterize small-molecule metabolites of the fecal metabonome (meta-metabolome). We describe a set of protocols for the preparation of fecal water extraction, storage, scanning, measurement of pH, and spectral processing and analysis. We also compare the effects of various sample storage conditions for processed and unprocessed samples to provide a framework for comprehensive analysis of small molecules from stool-derived samples. © 2020 Wiley Periodicals LLC Basic Protocol 1: Extracting fecal water from crude fecal samples Alternate Protocol 1: Extracting fecal water from small crude fecal samples Basic Protocol 2: Acquiring NMR spectra of metabolite samples Alternate Protocol 2: Acquiring NMR spectra of metabolite samples using Bruker spectrometer running TopSpin 3.x Alternate Protocol 3: Acquiring NMR spectra of metabolite samples by semiautomated process Basic Protocol 3: Measuring sample pH Support Protocol 1: Cleaning NMR tubes Basic Protocol 4: Processing raw spectra data Basic Protocol 5: Profiling spectra Support Protocol 2: Spectral profiling of sugars and other complex metabolites.


Assuntos
Fezes/química , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética , Humanos , Concentração de Íons de Hidrogênio
7.
Biochim Biophys Acta Biomembr ; 1862(10): 183345, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407777

RESUMO

Anabaena Sensory Rhodopsin (ASR) is a microbial photosensor from the cyanobacterium Anabaena sp. PCC 7120. It was found in previous studies that ASR co-purifies with several small molecules, although their identities and structural or functional roles remained unclear. Here, we use solid-state nuclear magnetic resonance (SSNMR) spectroscopy and mass spectrometry to characterize these molecules. Numerous correlations atypical for protein amino acids were found and assigned in the SSNMR spectra. The chemical shift patterns correspond to N-acetyl-d-glucosamine, N-acetyl-d-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-d-galactose which are part of the Enterobacterial Common Antigen (ECA). These sugars undergo rapid anisotropic motions and are likely linked flexibly to a rigid anchor that tightly binds ASR. Phosphorus NMR reveals several signals that are characteristic of monophosphates, further suggesting phosphatidylglyceride as the ECA lipid carrier which is anchored to ASR. In addition, NMR signals corresponding to common phospholipid phosphatidylethanolamine (PE) have been detected. The presence of PE tightly interacting with ASR was confirmed using liquid chromatography-mass spectrometry. This article commemorates Professor Michèle Auger and her contributions to membrane biophysics and Nuclear Magnetic Resonance.


Assuntos
Proteínas de Membrana/metabolismo , Fosfatidiletanolaminas/metabolismo , Rodopsinas Sensoriais/metabolismo , Anabaena/metabolismo , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Rodopsinas Sensoriais/química
8.
Chem Res Toxicol ; 33(2): 584-593, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31885260

RESUMO

Nitroaromatic compounds represent a major class of industrial chemicals that are also found in nature. Polycyclic derivatives are regarded as potent mutagens and carcinogens following bioactivation to produce nitrenium electrophiles that covalently modify DNA to afford N-linked C8-2'-deoxyguanosine (C8-dG) lesions that can induce frameshift mutations, especially in CpG repeat sequences. In contrast, their monocyclic counterparts typically exhibit weak mutagenicity or a lack thereof, despite also undergoing bioactivation to afford N-linked C8-dG adducts. Recently, it has been reported that cyano substitution can greatly increase the mutagenicity of nitroaniline derivatives that are components of azo dyes. The basis of this "cyano effect" may be rooted in the formation of a novel polycyclic adduct arising from initial formation of the N-linked C8-dG adduct followed by a cyclization process involving N7 of dG and the ortho-CN group of the attached C8-aryl moiety to generate a quinazolinimine ring as part of a fused tetracyclic C8,N7-dG adduct structure. The present work structurally characterizes this novel cyclic adduct using a combination of optical spectroscopies, NMR analysis, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Our data indicate that this highly fluorescent cyclic adduct adopts the promutagenic syn conformation and can stabilize the slipped mutagenic intermediate (SMI) within the CpG repeat of the NarI sequence, which is a hotspot for frameshift mutagenesis mediated by polycyclic N-linked C8-dG adducts. In contrast, the open para-CN (4-aminobenzontrile-derived) N-linked C8-dG adduct is less likely to disrupt the canonical B-form. Together, our results provide a rationale for the potent mutagenicity of cyano-substituted nitroaniline derivatives recently reported in frameshift-sensitive tester strains.


Assuntos
Compostos de Anilina/química , Compostos de Anilina/toxicidade , Adutos de DNA/química , Adutos de DNA/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Mutação da Fase de Leitura/efeitos dos fármacos , Adutos de DNA/genética , Teoria da Densidade Funcional , Desoxiguanosina/química , Desoxiguanosina/genética , Conformação Molecular/efeitos dos fármacos , Simulação de Dinâmica Molecular
9.
J Biol Chem ; 294(41): 14978-14990, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31416837

RESUMO

Escherichia coli serotype O9a provides a model for export of lipopolysaccharide (LPS) O-antigen polysaccharide (O-PS) via ABC transporters. In O9a biosynthesis, a chain-terminator enzyme, WbdD, caps the nonreducing end of the glycan with a methylphosphate moiety and thereby establishes chain-length distribution. A carbohydrate-binding module (CBM) in the ABC transporter recognizes terminated glycans, ensuring that only mature O-PS is exported and incorporated into LPS. Here, we addressed two questions arising from this model. Are both residues in the binary terminator necessary for termination and export? And is a terminal methylphosphate moiety sufficient for export of heterologous glycans? To answer the first question, we uncoupled WbdD kinase and methyltransferase activities. WbdD mutants revealed that although the kinase activity is solely responsible for chain-length regulation, both activities are essential for CBM recognition and export. Consistent with this observation, a saturation transfer difference NMR experiment revealed a direct interaction between the CBM and the terminal methyl group. To determine whether methylphosphate is the sole determinant of substrate recognition by the CBM, we exploited Klebsiella pneumoniae O7, whose O-PS repeat-unit structure differs from O9a, but, as shown here, offers the second confirmed example of a terminal methylphosphate serving in substrate recognition. In vitro and in vivo experiments indicated that each CBM can bind the O-PS only with the native repeat unit, revealing that methylphosphate is essential but not sufficient for substrate recognition and export. Our findings provide important new insight into the structural determinants in a prototypical quality control system for glycan assembly and export.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Metabolismo dos Carboidratos , Escherichia coli/metabolismo , Antígenos O/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Carboidratos , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Antígenos O/química , Organofosfatos/metabolismo , Polimerização , Ligação Proteica , Conformação Proteica
10.
Phytochemistry ; 164: 162-171, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31151063

RESUMO

In addition to the psychoactive constituents that are typically associated with Cannabis sativa L., there exist numerous other specialized metabolites in this plant that are believed to contribute to its medicinal versatility. This study focused on two such compounds, known as cannflavin A and cannflavin B. These prenylated flavonoids specifically accumulate in C. sativa and are known to exhibit potent anti-inflammatory activity in various animal cell models. However, almost nothing is known about their biosynthesis. Using a combination of phylogenomic and biochemical approaches, an aromatic prenyltransferase from C. sativa (CsPT3) was identified that catalyzes the regiospecific addition of either geranyl diphosphate (GPP) or dimethylallyl diphosphate (DMAPP) to the methylated flavone, chrysoeriol, to produce cannflavins A and B, respectively. Further evidence is presented for an O-methyltransferase (CsOMT21) encoded within the C. sativa genome that specifically converts the widespread plant flavone known as luteolin to chrysoeriol, both of which accumulate in C. sativa. These results therefore imply the following reaction sequence for cannflavins A and B biosynthesis: luteolin ► chrysoeriol ► cannflavin A and cannflavin B. Taken together, the identification of these two unique enzymes represent a branch point from the general flavonoid pathway in C. sativa and offer a tractable route towards metabolic engineering strategies that are designed to produce these two medicinally relevant Cannabis compounds.


Assuntos
Cannabis/química , Flavonas/biossíntese , Cannabis/metabolismo , Flavonas/química , Flavonas/metabolismo , Engenharia Metabólica , Estrutura Molecular
11.
Biochim Biophys Acta ; 1858(11): 2931-2939, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27539205

RESUMO

Characterization of membrane proteins is challenging due to the difficulty in mimicking the native lipid bilayer with properly folded and functional membrane proteins. Recently, styrene-maleic acid (StMA) copolymers have been shown to facilitate the formation of disc-like lipid bilayer mimetics that maintain the structural and dynamic integrity of membrane proteins. Here we report the controlled synthesis and characterization of StMA containing block copolymers. StMA polymers with different compositions and molecular weights were synthesized and characterized by size exclusion chromatography (SEC). These polymers act as macromolecular surfactants for 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol (POPG) lipids, forming disc like structures of the lipids with the polymer wrapping around the hydrophobic lipid edge. A combination of dynamic light scattering (DLS), solid-state nuclear magnetic resonance (SSNMR) spectroscopy, and transmission electron microscopy (TEM) was used to characterize the size of the nanoparticles created using these StMA polymers. At a weight ratio of 1.25:1 StMA to lipid, the nanoparticle size created is 28+1nm for a 2:1 ratio, 10+1nm for a 3:1 StMA ratio and 32+1nm for a 4:1 StMA ratio independent of the molecular weight of the polymer. Due to the polymer acting as a surfactant that forms disc like nanoparticles, we term these StMA based block copolymers "RAFT SMALPs". RAFT SMALPs show promise as a new membrane mimetic with different nanoscale sizes, which can be used for a wide variety of biophysical studies of membrane proteins.


Assuntos
Materiais Biomiméticos/química , Bicamadas Lipídicas/química , Maleatos/química , Nanopartículas/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Poliestirenos/química , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polimerização
12.
Molecules ; 20(6): 11236-56, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26096432

RESUMO

Countless hours of research and studies on triazine, phosphonate, and their combination have provided insightful information into their flame retardant properties on polymeric systems. However, a limited number of studies shed light on the mechanism of flame retardancy of their combination on cotton fabrics. The purpose of this research is to gain an understanding of the thermal degradation process of two triazine-phosphonate derivatives on cotton fabric. The investigation included the preparation of diethyl 4,6-dichloro-1,3,5-triazin-2-ylphosphonate (TPN1) and dimethyl (4,6-dichloro-1,3,5-triazin-2-yloxy) methyl phosphonate (TPN3), their application on fabric materials, and the studies of their thermal degradation mechanism. The studies examined chemical components in both solid and gas phases by using attenuated total reflection infrared (ATR-IR) spectroscopy, thermogravimetric analysis coupled with Fourier transform infrared (TGA-FTIR) spectroscopy, and 31P solid state nuclear magnetic resonance (31P solid state NMR), in addition to the computational studies of bond dissociation energy (BDE). Despite a few differences in their decomposition, TPN1 and TPN3 produce one common major product that is believed to help reduce the flammability of the fabric.


Assuntos
Fibra de Algodão , Retardadores de Chama , Organofosfonatos/química , Triazinas/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
13.
Chem Commun (Camb) ; 51(25): 5343-6, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25530198

RESUMO

Hydrophilic polymers were attached to lysozyme by a combination of grafting-to and grafting-from approaches using RAFT polymerization. A hydrophilic oligomer was synthesized, and attached to the protein. The protein-oligomer hybrid contained the RAFT end group, enabling chain extension in solution. Lysozyme maintained activity throughout this process.


Assuntos
Muramidase/química , Muramidase/metabolismo , Polímeros/química , Ativação Enzimática , Interações Hidrofóbicas e Hidrofílicas , Micrococcus/química , Micrococcus/metabolismo , Estrutura Molecular , Polimerização , Polímeros/metabolismo
14.
J Am Chem Soc ; 135(28): 10533-41, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23781904

RESUMO

The assembly of misfolded proteins is a critical step in the pathogenesis of amyloid and prion diseases, although the molecular mechanisms underlying this phenomenon are not completely understood. Here, we use (19)F NMR spectroscopy to examine the thermodynamic driving forces surrounding formation of ß-sheet-rich oligomers early in the misfolding and aggregation pathway of the mammalian prion protein. We show that initial assembly of a small octameric intermediate is entropically driven, while further assembly to putative prefibrillar aggregates is driven by a favorable change in enthalpy. Kinetic data suggest that formation of the ß-octamer represents a rate-limiting step in the assembly of prion aggregates. A disease-related mutation (F198S) known to destabilize the native state of PrP was also found to stabilize the ß-octamer, suggesting that it can influence susceptibility to prion disease through two distinct mechanisms. This study provides new insight into the misfolding pathway leading to critical oligomers of the prion protein and suggests a physical basis for increased assembly of the F198S mutant.


Assuntos
Flúor/química , Ressonância Magnética Nuclear Biomolecular , Príons/química , Termodinâmica , Animais , Humanos , Cinética , Príons/genética , Conformação Proteica , Dobramento de Proteína
15.
Biochemistry ; 52(19): 3320-31, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23570450

RESUMO

Upon blue light irradiation, photoactive yellow protein (PYP) undergoes a conformational change that involves large movements at the N-terminus of the protein. We reasoned that this conformational change might be used to control other protein or peptide sequences if these were introduced as linkers connecting the N- and C-termini of PYP in a circular permutant. For such a design strategy to succeed, the circularly permuted PYP (cPYP) would have to fold normally and undergo a photocycle similar to that of the wild-type protein. We created a test cPYP by connecting the N- and C-termini of wild-type PYP (wtPYP) with a GGSGGSGG linker polypeptide and introducing new N- and C-termini at G115 and S114, respectively. Biophysical analysis indicated that this cPYP adopts a dark-state conformation much like wtPYP and undergoes wtPYP-like photoisomerization driven by blue light. However, thermal recovery of dark-state cPYP is ∼10-fold faster than that of wtPYP, so that very bright light is required to significantly populate the light state. Targeted mutations at M121E (M100 in wtPYP numbering) were found to enhance the light sensitivity substantially by lengthening the lifetime of the light state to ∼10 min. Nuclear magnetic resonance (NMR), circular dichroism, and UV-vis analysis indicated that the M121E-cPYP mutant also adopts a dark-state structure like that of wtPYP, although protonated and deprotonated forms of the chromophore coexist, giving rise to a shoulder near 380 nm in the UV-vis absorption spectrum. Fluorine NMR studies with fluorotryptophan-labeled M121E-cPYP show that blue light drives large changes in conformational dynamics and leads to solvent exposure of Trp7 (Trp119 in wtPYP numbering), consistent with substantial rearrangement of the N-terminal cap structure. M121E-cPYP thus provides a scaffold that may allow a wider range of photoswitchable protein designs via replacement of the linker polypeptide with a target protein or peptide sequence.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/efeitos da radiação , Proteínas de Bactérias/genética , Fenômenos Biofísicos , Dicroísmo Circular , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Processos Fotoquímicos , Fotorreceptores Microbianos/genética , Conformação Proteica/efeitos da radiação , Engenharia de Proteínas , Espectrofotometria
16.
Biochim Biophys Acta ; 1818(12): 2994-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22846509

RESUMO

Proper positioning of membrane proteins in the host membrane is often critical to successful protein function. While hydrophobic considerations play a dominant role in determining the topology of a protein in the membrane, amphiphilic residues, such as tryptophan, may 'anchor' the protein near the water-membrane interface. The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) family of membrane proteins mediates intracellular membrane fusion. Correct positioning of the SNAREs is necessary if fusion is to occur. Synaptobrevins are integral vesicle membrane proteins that are well conserved across species. Interestingly, mammalian Synaptobrevins typically contain two adjacent tryptophans near the water-membrane interface whereas the Drosophila, neuronal-Synaptobrevin (n-Syb), contains a single tryptophan in this same region. To explore the role of these tryptophan residues in membrane positioning, we prepared a peptide containing residues 75-121 of D. melanogaster n-Syb in DPC micelles, biosynthetically labeled with 4-fluorophenylalanine and 5-fluorotryptophan for the examination by ¹9F NMR spectroscopy. Mutations of this construct containing zero and two tryptophan residues near the water-membrane interface resulted in changes in the positioning of n-Syb in the micelle. Moreover, the addition of a second tryptophan appears to slow dynamic motions of n-Syb near the micelle-water interface. These data therefore indicate that juxtamembrane tryptophan residues are important determinants of the position of Synaptobrevin in the membrane.


Assuntos
Membrana Celular/química , Drosophila melanogaster/química , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Triptofano/química , Animais , Membrana Celular/metabolismo , Estruturas da Membrana Celular , Interações Hidrofóbicas e Hidrofílicas , Fusão de Membrana
17.
Biochemistry ; 51(32): 6421-31, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22803618

RESUMO

Photoswitchable distance constraints in the form of photoisomerizable chemical cross-links offer a general approach to the design of reversibly photocontrolled proteins. To apply these effectively, however, one must have guidelines for the choice of cross-linker structure and cross-linker attachment sites. Here we investigate the effects of varying cross-linker structure on the photocontrol of folding of the Fyn SH3 domain, a well-studied model protein. We develop a theoretical framework based on an explicit-chain model of protein folding, modified to include detailed model linkers, that allows prediction of the effect of a given linker on the free energy of folding of a protein. Using this framework, we were able to quantitatively explain the experimental result that a longer, but somewhat flexible, cross-linker is less destabilizing to the folded state than a shorter more rigid cross-linker. The models also suggest how misfolded states may be generated by cross-linking, providing a rationale for altered dynamics seen in nuclear magnetic resonance analyses of these proteins. The theoretical framework is readily portable to any protein of known folded state structure and thus can be used to guide the design of photoswitchable proteins generally.


Assuntos
Proteínas Proto-Oncogênicas c-fyn/química , Alcinos/síntese química , Alcinos/química , Compostos Azo/síntese química , Compostos Azo/química , Reagentes de Ligações Cruzadas/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Moleculares , Fotólise , Conformação Proteica , Dobramento de Proteína , Ácidos Sulfanílicos/síntese química , Ácidos Sulfanílicos/química , Domínios de Homologia de src
18.
J Biomol NMR ; 51(1-2): 173-83, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21947925

RESUMO

In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and amphipathic helices are readily determined. We apply this method to the measure the topology of a monomeric mutant of phospholamban (AFA-PLN), a 52-residue membrane protein containing both an amphipathic and a transmembrane alpha helix. In dodecylphosphocholine micelles, the amphipathic helix of AFA-PLN was found to have a tilt angle of 87° ± 1° and an average immersion depth of 13.2 Å. The transmembrane helix was found to have an average immersion depth of 5.4 Å, indicating residues 41 and 42 are closest to the micelle centre. The resolution of paramagnetic relaxation rate enhancements from dissolved oxygen compares favourably to those from Ni (II), a hydrophilic paramagnetic species.


Assuntos
Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/métodos , Oxigênio/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Micelas , Oxigênio/metabolismo , Fosforilcolina/análogos & derivados , Soluções
19.
Biochemistry ; 50(19): 3975-83, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21510612

RESUMO

Cellular respiration, mediated by the passive diffusion of oxygen across lipid membranes, is key to many basic cellular processes. In this work, we report the detailed distribution of oxygen across lipid bilayers and examine the thermodynamics of oxygen partitioning via NMR studies of lipids in a small unilamellar vesicle (SUV) morphology. Dissolved oxygen gives rise to paramagnetic chemical shift perturbations and relaxation rate enhancements, both of which report on local oxygen concentration. From SUVs containing the phospholipid sn-2-perdeuterio-1-myristelaidoyl, 2-myristoyl-sn-glycero-3-phosphocholine (MLMPC), an analogue of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), we deduced the complete trans-bilayer oxygen distribution by measuring (13)C paramagnetic chemical shifts perturbations for 18 different sites on MLMPC arising from oxygen at a partial pressure of 30 bar. The overall oxygen solubility at 45 °C spans a factor of 7 between the bulk water (23.7 mM) and the bilayer center (170 mM) and is lowest in the vicinity of the phosphocholine headgroup, suggesting that oxygen diffusion across the glycerol backbone should be the rate-limiting step in diffusion-mediated passive transport of oxygen across the lipid bilayer. Lowering of the temperature from 45 to 25 °C gave rise to a slight decrease of the oxygen solubility within the hydrocarbon interior of the membrane. An analysis of the temperature dependence of the oxygen solubility profile, as measured by (1)H paramagnetic relaxation rate enhancements, reveals that oxygen partitioning into the bilayer is entropically favored (ΔS° = 54 ± 3 J K(-1) mol(-1)) and must overcome an enthalpic barrier (ΔH° = 12.0 ± 0.9 kJ mol(-1)).


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Micelas , Oxigênio/química , Termodinâmica , 1,2-Dipalmitoilfosfatidilcolina/química , Espectroscopia de Ressonância de Spin Eletrônica , Entropia , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fosfatidilgliceróis/química , Solubilidade , Lipossomas Unilamelares/química
20.
J Am Chem Soc ; 131(18): 6452-9, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19415935

RESUMO

Oxygen and Ni(II) are ideal paramagnetic species for NMR studies of immersion depth since they establish prominent concentration gradients across the membrane-water interface of either bilayers or micelles. Corresponding gradients of paramagnetic shifts and relaxation rates are observed by NMR for membrane embedded amphiphiles. Specifically, upon dissolution of oxygen at a partial pressure of 20 bar or more, (13)C NMR spectra of membrane embedded amphiphiles reveal chemical shift perturbations which depend sensitively on average immersion depth in the membrane. Similarly, depth-dependent enhancements of spin-lattice relaxation rates can be detected by (1)H NMR. Generally, such paramagnetic effects depend both on steric or accessibility factors and on the local concentration of the paramagnet. The steric terms can be factored out by combining paramagnetic rates arising from O(2) and Ni, in the form of a ratio, R(1P)(O(2))/R(1P)(Ni). The natural logarithm of this ratio is shown to depend linearly on immersion depth in a micelle. The analysis is verified using molecular dynamics simulations of dodecylphosphocholine in a detergent micelle, while thorough consideration of the paramagnetic rate data also allows for the determination of the orientation of imipramine in the micelle. Thus, a complete picture of topology arises from this approach which is readily applicable to studies of drugs and amphiphiles in fast-tumbling bicelles, small unilamellar vesicles, and micelles.


Assuntos
Membrana Celular/química , Espectroscopia de Ressonância Magnética/métodos , Membranas Artificiais , Magnetismo , Métodos , Micelas , Níquel , Oxigênio , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...