Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(22): e129, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36189884

RESUMO

Drugs are designed to bind their target proteins in physiologically relevant tissues and organs to modulate biological functions and elicit desirable clinical outcomes. Information about target engagement at cellular and subcellular resolution is therefore critical for guiding compound optimization in drug discovery, and for probing resistance mechanisms to targeted therapies in clinical samples. We describe a target engagement-mediated amplification (TEMA) technology, where oligonucleotide-conjugated drugs are used to visualize and measure target engagement in situ, amplified via rolling-circle replication of circularized oligonucleotide probes. We illustrate the TEMA technique using dasatinib and gefitinib, two kinase inhibitors with distinct selectivity profiles. In vitro binding by the dasatinib probe to arrays of displayed proteins accurately reproduced known selectivity profiles, while their differential binding to fixed adherent cells agreed with expectations from expression profiles of the cells. We also introduce a proximity ligation variant of TEMA to selectively investigate binding to specific target proteins of interest. This form of the assay serves to improve resolution of binding to on- and off-target proteins. In conclusion, TEMA has the potential to aid in drug development and clinical routine by conferring valuable insights in drug-target interactions at spatial resolution in protein arrays, cells and in tissues.


Assuntos
Terapia de Alvo Molecular , Dasatinibe/farmacologia , Sondas de Oligonucleotídeos , Análise Serial de Proteínas , Proteínas , Gefitinibe/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Terapia de Alvo Molecular/métodos
2.
Anal Chem ; 94(28): 10054-10061, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35786874

RESUMO

High-quality affinity probes are critical for sensitive and specific protein detection, in particular for detection of protein biomarkers in the early phases of disease development. Proximity extension assays (PEAs) have been used for high-throughput multiplexed protein detection of up to a few thousand different proteins in one or a few microliters of plasma. Clonal affinity reagents can offer advantages over the commonly used polyclonal antibodies (pAbs) in terms of reproducibility and standardization of such assays. Here, we explore nanobodies (Nbs) as an alternative to pAbs as affinity reagents for PEA. We describe an efficient site-specific approach for preparing high-quality oligo-conjugated Nb probes via enzyme coupling using Sortase A (SrtA). The procedure allows convenient removal of unconjugated affinity reagents after conjugation. The purified high-grade Nb probes were used in PEA, and the reactions provided an efficient means to select optimal pairs of binding reagents from a group of affinity reagents. We demonstrate that Nb-based PEA (nano-PEA) for interleukin-6 (IL6) detection can augment assay performance, compared to the use of pAb probes. We identify and validate Nb combinations capable of binding in pairs without competition for IL6 antigen detection by PEA.


Assuntos
Anticorpos de Domínio Único , Anticorpos , Indicadores e Reagentes , Interleucina-6 , Oligonucleotídeos , Reprodutibilidade dos Testes
3.
Commun Biol ; 4(1): 1284, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773084

RESUMO

Protein interactions and posttranslational modifications orchestrate cellular responses to e.g. cytokines and drugs, but it has been difficult to monitor these dynamic events in high-throughput. Here, we describe a semi-automated system for large-scale in situ proximity ligation assays (isPLA), combining isPLA in microtiter wells with automated microscopy and computer-based image analysis. Phosphorylations and interactions are digitally recorded along with subcellular morphological features. We investigated TGF-ß-responsive Smad2 linker phosphorylations and complex formations over time and across millions of individual cells, and we relate these events to cell cycle progression and local cell crowding via measurements of DNA content and nuclear size of individual cells, and of their relative positions. We illustrate the suitability of this protocol to screen for drug effects using phosphatase inhibitors. Our approach expands the scope for image-based single cell analyses by combining observations of protein interactions and modifications with morphological details of individual cells at high throughput.


Assuntos
Processamento de Imagem Assistida por Computador , Mapeamento de Interação de Proteínas , Proteína Smad4/genética , Fator de Crescimento Transformador beta1/genética , Células HaCaT , Humanos , Fosforilação , Análise de Célula Única , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
Anal Chem ; 93(31): 10999-11009, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34319715

RESUMO

The ability to monitor target engagement in cellular contexts is a key for successful drug discovery and also valuable in clinical routine. A cellular thermal shift assay (CETSA) provides realistic information about drug binding in cells and tissues, revealing drug-target engagement in clinically relevant samples. The CETSA combined with mass spectrometry (MS) detection can be applied in the early hit identification phase to generate target engagement data for large sets of proteins. However, the analysis is slow, requires substantial amounts of the sample material, and often misses proteins of specific interest. Here, we combined the CETSA and the multiplex proximity extension assay (PEA) for analysis of target engagement of a set of 67 proteins from small amounts of the sample material treated with kinase inhibitors. The results were concordant with the corresponding analyses read out via MS. Our approach allows analyses of large numbers of specific target proteins at high sensitivity in limited sample aliquots. Highly sensitive multiplex CETSA-PEA assays are therefore promising for monitoring drug-target engagement in small sample aliquots in the course of drug development and potentially in clinical settings.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas , Bioensaio , Desenvolvimento de Medicamentos , Proteínas
5.
N Biotechnol ; 45: 14-18, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29309916

RESUMO

Plasma proteome analyses of the future promise invaluable insights into states of health, not only by measuring proteins whose role it is to ensure blood homeostasis, but increasingly also as a window into the health of practically any tissue in the body via so-called leakage protein biomarkers. Realizing more of this vast potential will require progress along many lines. Here we discuss the main ones, such as optimal selection of target proteins, affinity reagents, immunoassay formats, samples, and applications, with a view from ongoing work in our laboratory.


Assuntos
Proteínas Sanguíneas/análise , Proteoma , Biomarcadores/análise , Humanos , Imunoensaio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...