Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(17): 25258-25272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468007

RESUMO

Chromium (Cr) toxicity can negatively affect plant growth and development, impacting agricultural productivity and posing risks to human health. Metallic nanoparticles (MNPs) such as titanium dioxide (TiO2) and natural growth regulators such as melatonin (MT) become a promising technology to manage heavy metal-contaminated soils and promote safe food production. The present work was conducted to find the effect of foliar application of TiO2 NPs (15 mg L-1) and MT (100 µM) on growth, biochemical attributes, and Cr accumulation in plant tissues of Melissa officinalis L. under Cr toxicity (50 and 100 mg Cr kg-1 soil). The results showed that Cr toxicity led to decreased plant performance, where 100 mg Cr kg-1 soil led to notable decreases in shoot weight (28%), root weight (27%), essential oil (EO) yield (34%), chlorophyll (Chl) a + b (33%), while increased malondialdehyde (MDA, 30%), superoxide dismutase (SOD) activity (51%), and catalase (CAT) activity (122%). The use of TiO2 NPs and MT, particularly their co-application, remarkably reduced Cr toxicity by enhancing plant weight, Chl content, and lowered MDA and antioxidant activity. Total phenolic content (TPC), total flavonoid content (TFC), EO percentage, and rosmarinic acid in plants treated with Cr at 50 mg Cr kg-1 soil and co-application of TiO2 NPs and MT were relatively higher than in other treatments. Under 100 mg Cr kg-1 soil, the synergic effect of TiO2 NPs and MT-enhanced rosmarinic acid content (22%) but lowered Cr accumulation in roots (51%) and shoots (72%). Heat map analysis showed that CAT, SOD, MDA, and EO yield had the maximum variability under Cr, TiO2 NPs, and MT. Exogenous TiO2 NPs and MT can be recommended to modulate Cr toxicity in lemon balm under soil Cr toxicity.


Assuntos
Melatonina , Melissa , Nanopartículas Metálicas , Nanopartículas , Poluentes do Solo , Humanos , Cromo/análise , Titânio/análise , Antioxidantes/análise , Ácido Rosmarínico , Superóxido Dismutase , Solo , Poluentes do Solo/análise
2.
Molecules ; 28(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687109

RESUMO

Decreased stemness and increased cellular senescence impair the ability of mesenchymal stem cells (MSCs) to renew themselves, change into different cell types, and contribute to regenerative medicine. There is an urgent need to discover new compounds that can boost MSCs' stemness and delay senescence. Therefore, this study aimed to investigate the impact of walnut kernel oil (WKO) and defatted (WKD) extracts on bone marrow (BM)-MSC stemness and senescence. Premature senescence and inflammation were induced in BM-MSCs using H2O2 and LPS, respectively. Phytochemical constituents of WKO and WKD extracts were detected by HPLC. The stemness (proliferation and migration), senescence-related markers (p53, p21, SIRT1, and AMPK), oxidative stress/antioxidant markers, inflammatory cytokines, and cell cycle of BM-MSCs were measured by MTT assay, qPCR, ELISA, and flow cytometry. WKO and WKD extracts improved rat BM-MSC stemness, as evidenced by (1) increased cell viability, (2) decreased apoptosis (low levels of Bax and caspase3 and high levels of Bcl2), (3) upregulated MMP9 and downregulated TIMP1 expression, and (4) cell cycle arrest in the G0/G1 phase and declined cell number in the S and G2/M phases. Additionally, WKO and WKD extracts reduced rat BM-MSC senescence, as indicated by (1) decreased p53 and p21 expression, (2) upregulated expression and levels of SIRT1 and AMPK, (3) reduced levels of ROS and improved antioxidant activity (higher activity of CAT, SOD, and GPx and upregulated expression of NrF2 and HO-1), and (4) declined levels of TNFα, IL1ß, and NF-κB. When compared to the WKO extract, the WKD extract had a greater impact on the induction of stemness and reduction of senescence of BM-MSCs due to its stronger antioxidant activity, which could be attributed to its higher levels of flavonoids and phenolic compounds, as detected by HPLC analysis. WKO and WKD extracts enhance rat BM-MSC stemness and protect them from senescence, suggesting their potential use as enhancers to increase MSCs' therapeutic efficacy.


Assuntos
Proteínas Quinases Ativadas por AMP , Juglans , Animais , Ratos , Antioxidantes/farmacologia , Peróxido de Hidrogênio , Sirtuína 1/genética , Proteína Supressora de Tumor p53
3.
Metabolites ; 13(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37512514

RESUMO

Mutagenesis is a highly efficient tool for establishing genetic variation and is widely used for genetic enhancement in various plants. The key benefit of mutation breeding is the prospect of enhancing one or several characteristics of a variety without altering the genetic background. In this study, we exposed the seeds of Salvia officinalis to four concentrations of hydrazine hydrate (HZ), i.e., (0%, 0.1%, 0.2%, and 0.3%) for 6 h. The contents of terpenoid compounds in the S. officinalis plantlets driven from the HZ-treated seeds were determined by GC-MS, which resulted in the identification of a total of 340 phytochemical compounds; 163 (87.48%), 145 (84.49%), 65 (97.45%), and 62 (98.32%), from the four concentrations of HZ (0%, 0.1%, 0.2%, and 0.3%), respectively. Furthermore, we used the qRT-PCR system to disclose the "transcriptional control" for twelve TPS genes related to terpenoid and terpene biosynthesis, namely, SoGPS, SoMYRS, SoNEOD, SoCINS, SoSABS, SoLINS, SoFPPS, SoHUMS, SoTPS6, SoSQUS, SoGGPS, and SoGA2. Altogether, results are likely to ensure some positive relationship between the concentrations of the chemical mutagen HZ used for treating the seeds, the type and amount of the produced terpenes, and the expression of their corresponding genes.

4.
Funct Integr Genomics ; 23(2): 191, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249689

RESUMO

As a key component of Transforming growth factor-ß (TGF-ß) pathway, Smad2 has many crucial roles in a variety of cellular processes, but it cannot bind DNA without complex formation with Smad4. In the present study, the molecular mechanism in the progress of myogenesis underlying transcriptional regulation of SMAD2 and SMAD4 had been clarified. The result showed the inhibition between SMAD2 and SMAD4, which promotes and inhibits bovine myoblast differentiation, respectively. Further, the characterization of promoter region of SMAD2 and SMAD4 was analyzed, and identified C/EBPß directly bound to the core region of both SMAD2 and SMAD4 genes promoter and stimulated the transcriptional activity. However, C/EBPß has lower expression in myoblasts which plays vital function in the transcriptional networks controlling adipogenesis, while the overexpression of C/EBPß gene in myoblasts significantly increased SMAD2 and SMAD4 gene expression, induced the formation of lipid droplet in bovine myoblasts, and promoted the expression of adipogenesis-specific genes. Collectively, our results showed that C/EBPß may play an important role in the trans-differentiation and dynamic equilibrium of myoblasts into adipocyte cells via promoting an increase in SMAD2 and SMAD4 gene levels. These results will provide an important basis for further understanding of the TGFß pathway and C/EBPß gene during myogenic differentiation.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Gotículas Lipídicas , Animais , Bovinos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Gotículas Lipídicas/metabolismo , Transdução de Sinais/genética , Diferenciação Celular , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Mioblastos/metabolismo
5.
Saudi J Gastroenterol ; 29(2): 102-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36695274

RESUMO

Conclusions: The results of this study provide an overview of the variations in microbiota diversity present in Saudi IBD patients compared to healthy controls. Results: The key finding was three negative bacterial biomarkers, Paraprevotellaceae, the Muribaculaceae families of Bacteroidetes phylum, and the Leuconostocaceae family of Firmicutes phylum, which had a higher relative abundance in healthy individuals compared to IBD patients. It was also found that primary microbiota signatures at certain genera and species levels, including Prevotella copri, Bifidobacterium adolescentis, Ruminococcus callidus, Coprococcus sp., Ruminococcus gnavus, Dorea formicigenerans, Leuconostoc, Dialister, Catenibacterium, Eubacterium biforme, and Lactobacillus mucosae, were absent in almost all IBD patients, while Veillonella dispar was absent in all healthy individuals. Methods: After obtaining an informed consent, fecal samples were collected from 11 participants with IBD (patients) and 10 healthy individuals (controls). The bacterial components of the microbial population were identified by next-generation sequencing of partial 16S rRNA. Statistically significant dissimilarities were observed between samples for all metrics. Background: Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition attributed to a complex interaction between imbalances in the gut microbiome, environmental conditions, and a deregulated immune response. The aim of the study was to investigate the composition of the gut microbiome of Saudi patients with IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Microbioma Gastrointestinal/genética , Projetos Piloto , Arábia Saudita/epidemiologia , RNA Ribossômico 16S/genética , Doenças Inflamatórias Intestinais/microbiologia , Fezes/microbiologia
6.
Genes (Basel) ; 13(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36553494

RESUMO

Exploration of and understanding diversity and variability in genotypes of germplasm determines the success of rice improvement programs. One of the most important determinants of the success of breeding programs is genetic diversity and inheritance of traits. Genetic variability analysis helps breeders to determine the appropriate selection method and standards to be used to improve the preferred trait. The aim of this study was to estimate genetic components, heritability and to obtain information about genetic diversity using cluster analysis and principal component analysis. Twenty rice genotypes with three replicates in a randomized complete block design were analyzed at the Experimental Farm at Sakha Agricultural Research Station, Sakha, Kafr El-Sheikh, Egypt, during the period from 2017 to 2020. The results of the analysis of variance showed that highly significant variations were recorded between the studied genotypes for all traits. The genotypic coefficient of variation (GCV%) and phenotypic (PCV%) coefficient of variation were moderate for plant height, panicles/plant, panicle weight, spikelets/panicle, filled grains/panicle, grain yield/plant and amylose content percentage for the first-year, second-year and combined data. This indicates the existence of beneficial genetic variability that can be exploited to improve these traits. The broad-sense estimates of heritability were high and recorded values higher than 60% for all the studied traits for the two-year and combined data, except for hulling percentage. This indicates that the selection of traits that have high heritability and are less affected by the environment leads to an acceleration of the improvement of these traits. The results from the cluster analysis and principal component analysis revealed a high level of genotypic variation among the studied genotypes and genetic diversity between them. One of the most important outcomes of this study is the successful utilization of genetic resources (germplasm) from ancient varieties and lines of rice in selecting and identifying 17 new restoration lines of rice, which have various improvement purposes in rice and hybrid rice breeding programs.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Fenótipo , Genótipo , Variação Genética/genética
7.
Plants (Basel) ; 11(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736755

RESUMO

Two cycles of pedigree selection for grain yield/plant (GY/P) and grain weight (GW) (100-grain weight) were imposed under drought stress and normal irrigation to study the direct and indirect selection of GY/P and GW in bread wheat. The selection started in the F6-generation (Cycle0-C0) of bread wheat (Triticum aestivum L.) traced back to the cross (Giza 164/Sids 4) of two Egyptian cultivars. The narrow sense heritability was higher under drought than under normal irrigation and increased by selection. Under drought, the observed direct gain after two cycles of selection for GW was 21.51% (p ≤ 0.01), and accompanied with an indirect gain in GY/P of 15.52%. The observed direct gain for GY/P was 17.98% and the indirect gain in GW was 13.81%. Under normal irrigation, the observed direct gain for GW was 12.86% and the indirect gain for GY/P was 16.04%. The direct gain in GY/P was 16.04% and the indirect gain in GW was 11.95%. The genotypic correlations were different in both environments before and after selection. Single trait selection was effective in improving the selection criterion, and selection greatly affected gene associations.

8.
Polymers (Basel) ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458373

RESUMO

pncB1 and pncB2 are two putative nicotinic acid phosphoribosyltransferases, playing a role in cofactor salvage and drug resistance in Mycobacterium tuberculosis. Mutations have been reported in first- and second-line drug targets, causing resistance. However, pncB1 and pncB2 mutational data are not available, and neither of their mutation effects have been investigated in protein structures. The current study has been designed to investigate mutations and also their effects on pncB1 and pncB2 structures. A total of 287 whole-genome sequenced data of drug-resistant Mycobacterium tuberculosis isolates from Khyber Pakhtunkhwa of Pakistan were retrieved (BioSample PRJEB32684, ERR2510337-ERR2510445, ERR2510546-ERR2510645) from NCBI. The genomic data were analyzed for pncB1 and pncB2 mutations using PhyResSE. All the samples harbored numerous synonymous and non-synonymous mutations in pncB1 and pncB2 except one. Mutations Pro447Ser, Arg286Arg, Gly127Ser, and delTCAGGCCG1499213>1499220 in pncB1 are novel and have not been reported in literature and TB databases. The most common non-synonymous mutations exhibited stabilizing effects on the pncB1 structure. Moreover, 36 out of 287 samples harbored two non-synonymous and 34 synonymous mutations in pncB2 among which the most common was Phe204Phe (TTT/TTC), present in 8 samples, which may have an important effect on the usage of specific codons that may increase the gene expression level or protein folding effect. Mutations Ser120Leu and Pro447Ser, which are present in the loop region, exhibited a gain in flexibility in the surrounding residues while Gly429Ala and Gly127Ser also demonstrated stabilizing effects on the protein structure. Inhibitors designed based on the most common pncB1 and pncB2 mutants may be a more useful strategy in high-burden countries. More studies are needed to elucidate the effect of synonymous mutations on organism phenotype.

9.
Bosn J Basic Med Sci ; 22(3): 412-426, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34761733

RESUMO

The largest microbial aggregation in the human body exists in the gastrointestinal tract. The microbiota in the host gastrointestinal tract comprises a diverse ecosystem, and the intestinal microbiota plays a vital role in maintaining gut homeostasis. This study aims to examine whether the gut microbiota influences unresponsiveness to anti-TNF-α treatments in primary nonresponder patients, and consequently identify the responsible microbes as biomarkers of unresponsiveness. Stool samples were collected from a cohort of patients with an established diagnosis of IBD, either ulcerative colitis (UC) or Crohn's disease (CD), following completion of the induction phase of anti TNF therapy. 16S rRNA sequencing analysis was used to examine the pattern of microbiota communities in fecal samples. The quality and quantity of fecal microbiota were compared in responder and primary nonresponder IBD patients following anti-TNF-α therapy. As per our hypothesis, a difference in gut microbiome composition between the two patient subgroups was observed. A decreased abundance of short-chain fatty acid (SCFA)-producing bacteria, including Anaerostipes, Coprococcus, Lachnospira, Roseburia, and Ruminococcus, was detected in non-responsive patients, which was the hallmark of dysbiosis. Biomarkers of dysbiosis that were identified as predictors of clinical nonresponse, included Klebsiella, Eubacteriaceae, RF32, Bifidobacterium_animalis, and Muribaculaceae-previously known as S24-7. Signature biomarkers showed dramatic alteration in the composition of gut microbiota in patients who demonstrated primary nonresponse to anti-TNF-α agents. Dysbiosis, with features including a dropped biodiversity, augmentation in opportunistic pathogenic microbiota, and a lack of SCFA-producing bacteria, is a prominent feature of the microbiome of primary nonresponders to anti-TNF-α therapy.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Inibidores do Fator de Necrose Tumoral , Bactérias/classificação , Biomarcadores , Disbiose/diagnóstico , Fezes/microbiologia , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , RNA Ribossômico 16S/genética , Inibidores do Fator de Necrose Tumoral/uso terapêutico
10.
Front Chem ; 10: 1064191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712982

RESUMO

Recent times have seen a strong surge in therapeutically targeting the hedgehog (HH)/GLI signaling pathway in cervical cancer. HH signaling pathway is reported to be a crucial modulator of carcinogenesis in cervical cancer and is also associated with recurrence and development of chemoresistance. Moreover, our previous reports have established that carvacrol (CAR) inhibited the proliferation of prostate cancer cells via inhibiting the Notch signaling pathway and thus, it was rational to explore its antiproliferative effects in cervical cancer cell lines. Herein, the present study aimed to investigate the anticancer and apoptotic potential of CAR on C33A cervical cancer cells and further explore the underlying mechanisms. We found that CAR significantly suppressed the growth of C33A cells, induced cell cycle arrest, and enhanced programmed cell death along with augmentation in the level of ROS, dissipated mitochondrial membrane potential, activation of caspase cascade, and eventually inhibited the HH signaling cascade. In addition, CAR treatment increased the expression of pro-apoptotic proteins (Bax, Bad, Fas-L, TRAIL, FADDR, cytochrome c) and concomitantly reduced the expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL) in C33A cells. CAR mediates the activation of caspase-9 and -3 (intrinsic pathway) and caspase-8 (extrinsic pathway) accompanied by the cleavage of PARP in cervical cancer cells. Thus, CAR induced apoptosis by both the intrinsic and extrinsic apoptotic pathways. CAR efficiently inhibited the growth of cervical cancer cells via arresting the cell cycle at G0/G1 phase and modulated the gene expression of related proteins (p21, p27, cyclin D1 and CDK4). Moreover, CAR inhibited the HH/GLI signaling pathway by down regulating the expression of SMO, PTCH and GLI1 proteins in cervical carcinoma cells. With evidence of the above results, our data revealed that CAR treatment suppressed the growth of HPV-C33A cervical cancer cells and further elucidated the mechanistic insights into the functioning of CAR.

11.
Inhal Toxicol ; 26(14): 891-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25357232

RESUMO

CONTEXT: Waterpipe smoke causes DNA damage in peripheral blood leukocytes and in buccal cells of smokers. OBJECTIVE: To determine the exposure effect of waterpipe smoke on buccal cells and peripheral blood leukocytes in regard to DNA damage using comet assay. MATERIALS AND METHODS: The waterpipe smoke condensates were analyzed by gas chromatography-mass spectrometry (GC-MS). The study was performed on 20 waterpipe smokers. To perform comet assay on bucaal cells of smokers, 10 µl of cell suspension was mixed with 85 µl of pre-warmed 1% low melting agarose, applied to comet slide and electrophoresed. To analyze the effect of smoke condensate in vitro, 1 ml of peripheral blood was mixed with 10 µl of smoke condensate and subjected for comet assay. RESULTS: The GC-MS analysis revealed the presence of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4on, nicotine, hydroxymethyl furancarboxaldehyde and 3-ethoxy-4-hydroxybenzaldehyde in the smoke condensates. Waterpipe smoking caused DNA damage in vivo in buccal cells of smokers. The tail moment and tail length in buccal cells of smokers were 186 ± 26 and 456 ± 71, respectively, which are higher than control. The jurak and moassel smoke condensates were found to cause DNA damage in peripheral blood leukocytes. The moassel smoke condensate was more damaging. DISCUSSION: There is wide misconception that waterpipe smoking is not as harmful as cigarette smoking. This study demonstrated that waterpipe smoke induced DNA damage in exposed cells. CONCLUSION: Waterpipe smokes cause DNA damage in buccal cells. The smoke condensate of both jurak and moassel caused comet formation suggesting DNA damage in peripheral blood leukocytes.


Assuntos
Dano ao DNA , Leucócitos/efeitos dos fármacos , Mucosa Bucal/efeitos dos fármacos , Fumaça/efeitos adversos , Fumar/efeitos adversos , Adulto , Idoso , Benzaldeídos/análise , Benzaldeídos/toxicidade , Ensaio Cometa , Furanos/análise , Furanos/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Voluntários Saudáveis , Humanos , Leucócitos/patologia , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/citologia , Mucosa Bucal/patologia , Nicotina/análise , Nicotina/toxicidade , Pironas/análise , Pironas/toxicidade , Fumaça/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...