Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Alzheimer Res ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38766828

RESUMO

BACKGROUND: As individuals age, they may develop Alzheimer's disease (AD), which is characterized by difficulties in speech, memory loss, and other issues related to neural function. Cycloastragenol is an active ingredient of Astragalus trojanus and has been used to treat inflammation, aging, heart disease, and cancer. OBJECTIVES: This study aimed to explore the potential therapeutic benefits of cycloastragenol in rats with experimentally induced AD. Moreover, the underlying molecular mechanisms were also evaluated by measuring Nrf2 and HO-1, which are involved in oxidative stress, NFκB and TNF-α, which are involved in inflammation, and BCL2, BAX, and caspase-3, which are involved in apoptosis. METHODS: Sprague-Dawley rats were given 70 mg/kg of aluminum chloride intraperitoneally daily for six weeks to induce AD. Following AD induction, the rats were given 25 mg/kg of cycloastragenol daily by oral gavage for three weeks. Hippocampal sections were stained with hematoxylin/ eosin and with anti-caspase-3 antibodies. The Nrf2, HO-1, NFκB, TNF-α, BCL2, BAX, and caspase-3 gene expressions and protein levels in the samples were analyzed. RESULTS: Cycloastragenol significantly improved rats' behavioral test performance. It also strengthened the organization of the hippocampus. Cycloastragenol significantly improved behavioral performance and improved hippocampal structure in rats. It caused a marked decrease in the expression of NFκB, TNF-α, BAX, and caspase-3, which was associated with an increase in the expression of BCL2, Nrf2, and HO-1. CONCLUSION: Cycloastragenol improved the structure of the hippocampus in rats with AD. It enhanced the outcomes of behavioral tests, decreased the concentration of AChE in the brain, and exerted antioxidant and anti-inflammatory effects. Antiapoptotic effects were also noted, leading to significant improvements in cognitive function, memory, and behavior in treated rats.

2.
Biomol Biomed ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461536

RESUMO

Hepatocellular carcinoma (HCC) affects approximately 800,000 individuals globally each year. Despite advancements in HCC treatments, there is still a pressing need to identify new drugs that can combat resistance. One potential option is echinacoside, a natural caffeic acid glycoside with antioxidant, anti-inflammatory, antidepressant, and antidiabetic properties. Therefore, we aimed to investigate the ability of echinacoside to exhibit antitumor activity against HCC in rats through ameliorating hepatic fibrosis and tumor invasion. Rats were given thioacetamide to induce HCC, and some were given 30 mg/kg of echinacoside twice a week for 16 weeks. The liver impairment was assessed by measuring serum α-fetoprotein (AFP) and examining liver sections stained with Masson trichrome or anti-transforming growth factor (TGF)-ß1 antibodies. The hepatic expression of mRNA and protein levels of TGF-ß1, ß-catenin, SMAD4, matrix metalloproteinase-9 (MMP9), phosphoinositide 3-kinases (PI3K), mammalian target of rapamycin (mTOR), connective tissue growth factor 2 (CCN2), E-Cadherin, platelets derived growth factor (PDGF)-B and fascin were also analyzed. Echinacoside improved the survival rate of rats by decreasing serum AFP and the number of hepatic nodules. Examination of micro-images indicated that echinacoside can reduce fibrosis. It also significantly decreased the expression of TGF-ß1, ß-catenin, SMAD4, MMP9, PI3K, mTOR, CCN2, PDGF-B, and fascin while enhancing the expression of E-Cadherin. In conclusion, echinacoside exhibits a protective effect against HCC by increasing survival rates and decreasing tumor growth. It also acts as an inhibitor of the hepatic tissue fibrosis pathway by reducing the expression of TGF-ß1, ß-catenin, SMAD4, PI3K, CCN2, PDGF-B and mTOR. Additionally, it prevents tumor invasion by suppressing MMP9 and fascin, and increasing the expression of E-Cadherin.

3.
Cureus ; 16(1): e51997, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38205087

RESUMO

Background and objectives Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with a poor prognosis. It is currently the second most common cause of cancer-related mortality. Arctiin, a compound found in plants commonly used as a vegetable in Asian countries and as an ingredient in traditional European dishes, possesses various properties, including anti-proliferative, anti-senescence, anti-oxidative, anti-tumor, toxic, anti-adipogenic, and anti-bacterial effects. Our study aims to investigate the potential antitumor activity of arctiin against HCC in rats by inhibiting cell fibrosis and apoptosis. Methods Rats were induced with HCC by administering thioacetamide. Arctiin was orally administered to some rats twice a week for 16 weeks at a dose of 30 mg/kg. The liver impairment was evaluated by measuring serum α-fetoprotein (AFP) and examining liver sections stained with Masson trichrome or anti-hypoxia-induced factor-1α (HIF-1α) antibodies. The hepatic expression of messenger RNA and protein levels of HIF-1α, protein kinase C (PKC), extracellular signal-regulated kinase (ERK), ß-catenin, and mothers against decapentaplegic homolog 4 (SMAD4) were analyzed. Results Our study demonstrated that arctiin can potentially increase the survival rate of rats. This is achieved through a reduction in serum AFP levels and hepatic nodules. We also observed that arctiin has the ability to inhibit the formation of fibrotic tissues and necrotic nodules in HCC rats. Additionally, arctiin can significantly decrease the expression of HIF-1α, PKC, ERK, ß-catenin, and SMAD4. Conclusion Arctiin has demonstrated potential anti-tumor properties that could ameliorate HCC. Studies have shown that it may increase survival rates and reduce the number of tumors and AFP levels. Arctiin works by inhibiting HCC-induced hypoxia, thus blocking the expression of HIF-1α. It also helps to slow down tumor fibrosis by decreasing the expression of ß-catenin and SMAD4. Furthermore, arctiin has been found to downregulate PKC and ERK, reducing hepatic tissue apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...