Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci (Basel) ; 12(1)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38390857

RESUMO

Leukodystrophies, a group of rare demyelinating disorders, mainly affect the CNS. Clinical presentation of different types of leukodystrophies can be nonspecific, and thus, imaging techniques like MRI can be used for a more definitive diagnosis. These diseases are characterized as cerebral lesions with characteristic demyelinating patterns which can be used as differentiating tools. In this review, we talk about these MRI study findings for each leukodystrophy, associated genetics, blood work that can help in differentiation, emerging diagnostics, and a follow-up imaging strategy. The leukodystrophies discussed in this paper include X-linked adrenoleukodystrophy, metachromatic leukodystrophy, Krabbe's disease, Pelizaeus-Merzbacher disease, Alexander's disease, Canavan disease, and Aicardi-Goutières Syndrome.


Assuntos
Adrenoleucodistrofia , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Doenças Neurodegenerativas , Doença de Pelizaeus-Merzbacher , Humanos , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/patologia , Leucodistrofia de Células Globoides/diagnóstico por imagem , Leucodistrofia de Células Globoides/patologia , Adrenoleucodistrofia/diagnóstico por imagem , Adrenoleucodistrofia/genética
2.
Liver Transpl ; 30(3): 311-320, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153309

RESUMO

Liver transplantation (LT) is a lifesaving yet complex intervention with considerable challenges impacting graft and patient outcomes. Despite best practices, 5-year graft survival is only 70%. Sophisticated quantitative techniques offer potential solutions by assimilating multifaceted data into insights exceeding human cognition. Optimizing donor-recipient matching and graft allocation presents additional intricacies, involving the integration of clinical and laboratory data to select the ideal donor and recipient pair. Allocation must balance physiological variables with geographical and logistical constraints and timing. Quantitative methods can integrate these complex factors to optimize graft utilization. Such methods can also aid in personalizing treatment regimens, drawing on both pretransplant and posttransplant data, possibly using continuous immunological monitoring to enable early detection of graft injury or infected states. Advanced analytics is thus poised to transform management in LT, maximizing graft and patient survival. In this review, we describe quantitative methods applied to organ transplantation, with a focus on LT. These include quantitative methods for (1) utilizing and allocating donor organs equitably and optimally, (2) improving surgical planning through preoperative imaging, (3) monitoring graft and immune status, (4) determining immunosuppressant doses, and (5) establishing and maintaining the health of graft and patient after LT.


Assuntos
Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Doadores de Tecidos , Sobrevivência de Enxerto
3.
Curr Res Med Sci ; 1(1): 24-42, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36649460

RESUMO

Beyond its neuroprotective role, CSF functions to rid the brain of toxic waste products through glymphatic clearance. Disturbances in the circulation of CSF and glymphatic exchange are common among those experiencing HCP syndrome, which often results from SAH. Normally, the secretion of CSF follows a two-step process, including filtration of plasma followed by the introduction of ions, bicarbonate, and water. Arachnoid granulations are the main site of CSF absorption, although there are other influencing factors that affect this process. The pathway through which CSF is through to flow is from its site of secretion, at the choroid plexus, to its site of absorption. However, the CSF flow dynamics are influenced by the cardiovascular system and interactions between CSF and CNS anatomy. One, two, and three-dimensional models are currently methods researchers use to predict and describe CSF flow, both under normal and pathological conditions. They are, however, not without their limitations. "Rest-of-body" models, which consider whole-body compartments, may be more effective for understanding the disruption to CSF flow due to hemorrhages and hydrocephalus. Specifically, SAH is thought to prevent CSF flow into the basal cistern and paravascular spaces. It is also more subject to backflow, caused by the presence of coagulation cascade products. In regard to the fluid dynamics of CSF, scar tissue, red blood cells, and protein content resulting from SAH may contribute to increased viscosity, decreased vessel diameter, and increased vessel resistance. Outside of its direct influence on CSF flow, SAH may result in one or both forms of hydrocephalus, including noncommunicating (obstructive) and communicating (nonobstructive) HCP. Imaging modalities such as PC-MRI, Time-SLIP, and CFD model, a mathematical model relying on PC-MRI data, are commonly used to better understand CSF flow. While PC-MRI utilizes phase shift data to ultimately determine CSF speed and flow, Time-SLIP compares signals generated by CSF to background signals to characterizes complex fluid dynamics. Currently, there are gaps in sufficient CSF flow models and imaging modalities. A prospective area of study includes generation of models that consider "rest-of-body" compartments and elements like arterial pulse waves, respiratory waves, posture, and jugular venous posture. Going forward, imaging modalities should work to focus more on patients in nature in order to appropriately assess how CSF flow is disrupted in SAH and HCP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...