Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(10): 349, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320440

RESUMO

CONTEXT: The intermolecular interactions of ethyl acetate (EtOAc)-water (H2O)/ethanol (EtOH) mixtures were investigated using a combination of Raman spectroscopy and quantum chemical calculations. The computational approach was used to analyze the structure of hydrogen-bonded complexes of ethyl acetate with water/ethanol molecules, based on density functional theory (DFT). The calculated frequencies closely matched the experimental Raman values, with differences being under 4%. Experimental data show that when the concentrations of ethyl acetate in the ethyl acetate/water/ethanol solutions were reduced, almost all Raman spectral bands are blue-shifted. The AIM analysis reveals that all the given complexes possess a positive energy density, indicating that the molecules interact electrostatically. The energy and bond length indicate that the methyl group forms relatively weak hydrogen bonds. Analysis indicates that EtOAc forms weak H-bonding C = O∙∙∙H and C-H∙∙∙O, which are recognized as van der Waals interactions. As the amount of ethyl acetate decreases in the complex, the interaction forces also decrease. This could also explain why the bands are blue-shifted. It was discovered that the title complexes' hydrogen bond energy decreased exponentially as bond length increased. METHODS: The geometries of the molecular complexes were optimized using the Gaussian 09W program and the B3LYP/6-311 + + G(d,p) set of functions. The potential energy distribution (PED) analysis was performed using VEDA 4.0 software. Raman spectra were drawn using the Origin 8.5 software. The Multiwfn 3.8 software was used to calculate topological parameters of electron density in molecular systems. GaussView 6.0 and Visual Molecular Dynamics (VMD) 1.9.3 tools were used to visualize all computational results.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124600, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852303

RESUMO

Psilocin, or 4-HO-DMT (or 3-(2-dimethylaminoethyl)-1H-indol-4-ol), is a psychoactive alkaloid substance from the tryptamine family, isolated from Psilocybe mushrooms. This substance is being studied by various research groups because it has a clear therapeutic effect in certain dosages. In this work, the study of the structure and properties of psilocin was carried using theoretical methods: the effects of polar solvents (acetonitrile, dimethylsulfoxide, water, and tetrahydrofuran) on the structural parameters, spectroscopic properties (Raman, IR, and UV-Vis), frontier molecular orbital (FMO), molecular electrostatic potential (MEP) surface, and nonlinear optical parameters (NLO). Theoretical calculations were performed at the B3LYP/6-311++G(d,p) level by the density functional theory (DFT) method. IEFPCM was used to account for solvent effects. The types and nature of non-covalent interactions (NCI) between psilocin and solvent molecules were determined using Atoms in Molecules (AIM), the reduced density gradient method (RDG), the electron localization function (ELF), and the localization orbital locator (LOL). Experimental and calculated FT-IR, FT-Raman, and UV-Vis spectra were compared and found to be in good agreement.

3.
J King Saud Univ Sci ; 35(6): 102758, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37351185

RESUMO

In this investigation a single crystal of (4-oxo-piperidinium ethylene acetal) trioxonitrate (4-OPEAN) was synthesized by modifying the mechanism of gradual evaporation at ambient temperature. The operational groupings are found in the complex material in the elaborate substance, according to the infrared spectrum. Single crystal X-ray diffraction suggests, (4-OPEAN) with the chemical formula (C7H12NO2)NO3 belongs to the orthorhombic space group Pnma and is centrosymmetric in three dimensions with the aforementioned network configurations, a = 11.7185(8) Å, b = 7.2729(6) Å, c = 11.0163(8) Å, Z = 4, V = 938.89(12) Å3, R = 0.0725 and wR = 0.1762. Many N-H…O and C-H…O hydrogen bridges, both bifurcated and non-bifurcated, link the 4-oxo-piperidinium ethylene acetal cations to the trigonal (NO3-) anions. Molecular geometry and optimal parameters of (4-OPEAN) have been determined via DFT computations at the theory-level B3LYP/6-311 ++ G(d, p), these have been contrasted with the X-ray data already available. Hirshfeld surface analysis has made it possible for the visualization and quantification of relationships between molecules in the crystal composition. Quantum theory atoms in molecules, electron location function, decreased density gradient, and localized orbital locator research have all been used to explore non-covalent interactions in crystal structure. In order to pinpoint both the nucleophilic and electrophilic locations that support hydrogen bond formation, the molecule electrostatic potential was determined. The greatest and lowest energies of occupied and unfilled molecular orbitals, together with additional derived atomic characteristics, show the material to be extremely stable and hard. According to a molecular docking study, 4-OPEAN may exhibit inhibiting effects on the 6Y84 and 7EJY virus proteins from corona (COVID-19).

4.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677528

RESUMO

The physicochemical properties of binary systems are of great importance for the application of the latter. We report on the investigation of an ammonium sulfamate-urea binary system with different component ratios using a combination of experimental (FTIR, XRD, TGA/DSC, and melting point) and theoretical (DFT, QTAIM, ELF, RDG, ADMP, etc.) techniques. It is shown that, at a temperature of 100 °C, the system under study remains thermally and chemically stable for up to 30 min. It was established using X-ray diffraction analysis that the heating time barely affects the X-ray characteristics of the system. Data on the aggregate states in specified temperature ranges were obtained with thermal analysis and determination of the melting point. The structures of the ammonium sulfamate-urea system with different component ratios were optimized within the density functional theory. The atom-centered density matrix propagation calculation of the ammonium sulfamate-urea system with different component ratios was performed at temperatures of 100, 300, and 500 K. Regardless of the component ratio, a regular increase in the potential energy variation (curve amplitude) with an increase in temperature from 100 to 500 K was found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA