Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PeerJ ; 11: e16486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025745

RESUMO

The genetic diversity of local coffee populations is crucial to breed new varieties better adapted to the increasingly stressful environment due to climate change and evolving consumer preferences. Unfortunately, local coffee germplasm conservation and genetic assessment have not received much attention. Molecular tools offer substantial benefits in identifying and selecting new cultivars or clones suitable for sustainable commercial utilization. New annotation methods, such as chloroplast barcoding, are necessary to produce accurate and high-quality phylogenetic analyses. This study used DNA barcoding techniques to examine the genetic relationships among fifty-six accessions collected from the southwestern part of Saudi Arabia. PCR amplification and sequence characterization were used to investigate the effectiveness of four barcoding loci: atpB-rbcl, trnL-trnF, trnT-trnL, and trnL. The maximum nucleotide sites, nucleotide diversity, and an average number of nucleotide differences were recorded for atpB-rbcl, while trnT-trnL had the highest variable polymorphic sites, segregating sites, and haploid diversity. Among the four barcode loci, trnT-trnL recorded the highest singleton variable sites, while trnL recorded the highest parsimony information sites. Furthermore, the phylogenetic analysis clustered the Coffea arabica genotypes into four different groups, with three genotypes (KSA31, KSA38, and KSA46) found to be the most divergent genotypes standing alone in the cluster and remained apart during the analysis. The study demonstrates the presence of considerable diversity among coffee populations in Saudi Arabia. Furthermore, it also shows that DNA barcoding is an effective technique for identifying local coffee genotypes, with potential applications in coffee conservation and breeding efforts.


Assuntos
Café , Código de Barras de DNA Taxonômico , Filogenia , Arábia Saudita , Melhoramento Vegetal , Variação Genética/genética , Nucleotídeos
2.
Can J Infect Dis Med Microbiol ; 2022: 3050495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132979

RESUMO

This study aimed to identify if Fusarium and Colletotrichum species are linked to coffee leaf wilt symptoms (Coffea arabica L.) gardens in Jazan region, Kingdom Saudi Arabia. The symptomatic wilted leaves and shoots were collected from Jazan Mountain Region Development Authority (JMRDA) farm in jabal Fifa. Samples of roots and leaves tissues were plated on Dox' Agar medium and incubated for one week at 24oC. Two morphologically different fungus colonies grew on the medium. A PCR-based method was used for the molecular amplification and characterization of the fungi using a 18SrRNA specific primer. 1323 and 1501 bp PCR products were obtained by using the 1% agarose gel electrophoresis. The sequence analysis and genbank homology revealed that the present fungi were Fusarium oxysporum and Colletotrichum musae with 99 and 98% similarity, respectively. Both fungi sequences were submitted to the genebank under accession numbers OP010081 and OP010082, respectively. This is the first report of these two genera of fungi infecting the roots and leaves of coffee trees in Jazan Region of Saudi Arabia and suggests that other fungus species may play a significant role as diseases in other coffee-producing areas.

3.
Plants (Basel) ; 11(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956506

RESUMO

The biggest challenges are locating effective, reasonably priced, and eco-friendly compounds to treat diseases caused by insects and microbes. The aim of this study was to employ GC-MS to assess the biological potency and chemical composition of the aerial parts of Reichardia tingitana (L.) Roth. Using this technique, 17 components were interpreted from the extracted plant, accounting for around 100% of total volatile compounds. Commonly, 6,10,14-trimethylpentadecan-2-one (21.98%) and methyl oleate (27.26%) were positioned as the major components, which were ascertained after 19.25, and 23.34 min, respectively. The major components were classified as hydrocarbons (23.82%), fatty acids, esters of fatty acids (57.46%), steroids (17.26%), and terpenes (1.48%). The DPPH antioxidant activity of the R. tingitana extracted components revealed that the shoot extract is the most powerful, with an IC50 value of 30.77 mg L−1 and a radical scavenging activity percentage of 71.91%. According to the current result, methanolic extract of R. tingitana had the maximum zone of inhibition against Salmonella typhimurium and Bacillus cereus (25.71 ± 1.63 and 24.42 ± 0.81 mm, respectively), while Clostridium tetani and Staphylococcus xylosus were the main resistant species. In addition, the 50% methanol crude shoot extract of R. tingitana showed greater potential anticancer activity with high cytotoxicity for two tumor cells HepG-2 and PC3 cells (IC50 = 29.977 and 40.479 µg mL−1, respectively) and noncytotoxic activity for WI-38 normal cells (IC50 = >100 µg mL−1). The MeOH extract of plant sample was more effective against Aedes aegypti larvae with LC50 of extract being 46.85, 35.75, and 29.38 mg L−1, whereas the LC90 is 82.66, 63.82, and 53.30 mg L−1 for the various time periods of 24, 48, and 72 h, respectively. R. tingitana is a possible biologically active plant. Future study will include pure chemical isolation and individual component bioactivity evaluation.

4.
Molecules ; 27(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35630653

RESUMO

The objective of this study was to assess the biological potency and chemical composition of Rumex vesicarius aboveground parts using GC-MS. In this approach, 44 components were investigated, comprising 99.99% of the total volatile compounds. The major components were classified as fatty acids and lipids (51.36%), oxygenated hydrocarbons (33.59%), amines (7.35%), carbohydrates (6.06%), steroids (1.21%), and alkaloids (0.42%). The major components were interpreted as 1,3-dihydroxypropan-2-yl oleate (oxygenated hydrocarbons, 18.96%), ethyl 2-hydroxycyclohexane-1-carboxylate (ester of fatty acid, 17.56%), and 2-propyltetrahydro-2H-pyran-3-ol (oxygenated hydrocarbons, 11.18%). The DPPH antioxidant activity of the extracted components of R. vesicarius verified that the shoot extract was the most potent with IC50 = 28.89 mg/L, with the percentages of radical scavenging activity at 74.28% ± 3.51%. The extracted plant, on the other hand, showed substantial antibacterial activity against the diverse bacterial species, namely, Salmonella typhi (23.46 ± 1.69), Bacillus cereus (22.91 ± 0.96), E. coli (21.07 ± 0.80), and Staphylococcus aureus (17.83 ± 0.67). In addition, the extracted plant was in vitro assessed as a considerable anticancer agent on HepG2 cells, in which MTT, cell proliferation cycle, and DNA fragmentation assessments were applied on culture and treated cells. The larvicidal efficacy of the extracted plant was also evaluated against Aedes aegypti, the dengue disease vector. As a result, we may infer that R. vesicarius extract increased cytocompatibility and cell migratory capabilities, and that it may be effective in mosquito control without causing harm.


Assuntos
Anti-Infecciosos , Antineoplásicos , Rumex , Animais , Antibacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Escherichia coli , Mosquitos Vetores , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rumex/química
5.
J Fungi (Basel) ; 8(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35448627

RESUMO

Herein, silver nanoparticles (Ag-NPs) were synthesized using an environmentally friendly approach by harnessing the metabolites of Aspergillus niger F2. The successful formation of Ag-NPs was checked by a color change to yellowish-brown, followed by UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), Transmission electron microscopy (TEM), and X-ray diffraction (XRD). Data showed the successful formation of crystalline Ag-NPs with a spherical shape at the maximum surface plasmon resonance of 420 nm with a size range of 3-13 nm. The Ag-NPs showed high toxicity against I, II, III, and IV instar larvae and pupae of Aedes aegypti with LC50 and LC90 values of 12.4-22.9 ppm and 22.4-41.4 ppm, respectively under laboratory conditions. The field assay exhibited the highest reduction in larval density due to treatment with Ag-NPs (10× LC50) with values of 59.6%, 74.7%, and 100% after 24, 48, and 72 h, respectively. The exposure of A. aegypti adults to the vapor of burning Ag-NPs-based coils caused a reduction of unfed individuals with a percentage of 81.6 ± 0.5% compared with the positive control, pyrethrin-based coils (86.1 ± 1.1%). The ovicidal activity of biosynthesized Ag-NPs caused the hatching of the eggs with percentages of 50.1 ± 0.9, 33.5 ± 1.1, 22.9 ± 1.1, and 13.7 ± 1.2% for concentrations of 5, 10, 15, and 20 ppm, whereas Ag-NPs at a concentration of 25 and 30 ppm caused complete egg mortality (100%). The obtained data confirmed the applicability of biosynthesized Ag-NPs to the biocontrol of A. aegypti at low concentrations.

6.
Front Bioeng Biotechnol ; 10: 849921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295650

RESUMO

Herein, the metabolites secreted by brown algae, Cystoseira crinita, were used as biocatalyst for green synthesis of magnesium oxide nanoparticles (MgO-NPs). The fabricated MgO-NPs were characterized using UV-vis spectroscopy, Fourier transforms infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy linked with energy-dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Data showed successful formation of crystallographic and spherical MgO-NPs with sizes of 3-18 nm at a maximum surface plasmon resonance of 320 nm. Moreover, EDX analysis confirms the presence of Mg and O in the sample with weight percentages of 54.1% and 20.6%, respectively. Phyco-fabricated MgO-NPs showed promising activities against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans with MIC values ranging between 12.5 and 50 µg mL-1. The IC50 value of MgO-NPs against cancer cell lines (Caco-2) was 113.4 µg mL-1, whereas it was 141.2 µg mL-1 for normal cell lines (Vero cell). Interestingly, the green synthesized MgO-NPs exhibited significant larvicidal and pupicidal activity against Musca domestica. At 10 µg mL-1 MgO-NPs, the highest mortality percentages were 99.0%, 95.0%, 92.2%, and 81.0% for I, II, III instars' larvae, and pupa of M. domestica, respectively, with LC50 values (3.08, 3.49, and 4.46 µg mL-1), and LC90 values (7.46, 8.89, and 10.43 µg mL-1), respectively. Also, MgO-NPs showed repellence activity for adults of M. domestica at 10 µg mL-1 with 63.0%, 77.9%, 84.9%, and 96.8% after 12, 24, 48, and 72 h, respectively.

7.
J Basic Microbiol ; 60(4): 322-330, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31840835

RESUMO

Acacia species produce extensive, deep root systems with a capacity to develop mycorrhizal symbioses that facilitate plant nutrition via enhanced soil nutrient absorption. This study aimed to evaluate the mycorrhizal status and the diversity of arbuscular mycorrhizal fungi (AMF) associated with acacia trees in southwestern Saudi Arabia. The mycorrhizal status varied greatly between species. The highest values of AMF root colonization and spore density were observed in the roots and in the rhizospheric soil of Acacia negrii. DNA was extracted from plant roots and the AMF large subunit ribosomal DNA (LSU rDNA) was amplified by a nested polymerase chain reaction. A total of 274 LSU rDNA cloned fragments from roots of the three acacia trees were sequenced. Phylogenetic analysis revealed a high AMF diversity, especially in Acacia tortilis. On the basis of LSU rDNA sequences, AMF was grouped into five genera: Glomus, Claroideoglomus, Acaulospora, Gigaspora, and Scutellospora. The genus Glomus fungi were the dominant colonizers of all three acacia species, while the genus Scutellospora fungi were found only in A. tortilis roots. The high AMF-acacia diversity suggests that AMF plays an important role in the sustainability of acacia species in the arid environment.


Assuntos
Acacia/microbiologia , Micorrizas/classificação , Filogenia , Microbiologia do Solo , DNA Fúngico/genética , DNA Ribossômico/genética , Clima Desértico , Ecossistema , Raízes de Plantas/microbiologia , Rizosfera , Arábia Saudita
8.
Asian Pac J Cancer Prev ; 18(3): 771-777, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28441785

RESUMO

Objective: To evaluate the cytotoxic and genotoxic activity of Euphorbia triaculeata Forssk. plant extract from Jazan region, Saudi Arabia, in an in vitro cancer model, which could be beneficial in anticancer therapy against human breast cancer cell line (MCF-7), prostate cell line (PC-3), human hepatocellular carcinoma cell line (HEPG2) and normal breast epithelial cell line (MCF-10A). The human foreskin fibroblast cell line, (Hs68), was also included in the cell panel. Doxorubicin and 5-Flurouracil, broad-spectrum anticancer drugs, were used as the positive control. Methods: Cytotoxicity of Euphorbia triaculeata plant extract was investigated by employing MTT assay and the genotoxicity was assessed by using comet assay. Results: Both toxicity tests exhibited significant toxicity results. In the comet assay, the Euphorbia triaculeata extract exhibited genotoxic effects against MCF-7 DNA and PC 3 but not on HEPG2 cell lines in a time-dependent manner by increasing the mean percentage of DNA damage. Euphorbia triaculeata extract showed significant toxicity against cancer cells. Comparison with positive control signifies that cytotoxicity exhibited by methanol extract might have moderate activity. Conclusion: The present work confirmed the cytotoxicity and genotoxicity of Euphorbia triaculeata plant. However, the observed toxicity of this plant extract needs to be confirmed by additional studies. Based on our results, further examination of the potential anticancer properties of Euphorbia triaculeata plant species and the identification of the active ingredients of these extracts is warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...