Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Investig Med ; : 10815589241270489, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39091053

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent form of primary liver cancer with a 5-year survival rate of just 18%. Ferulic acid, a natural compound found in fruits and vegetables such as sweet corn, rice bran, and dong quai, is an encouraging drug known for its diverse positive effects on the body, including anti-inflammatory, anti-apoptotic, and neuroprotective properties. Our study aimed to investigate the potential antitumor effects of ferulic acid to inhibit tumor growth and inflammation of HCC in rats. HCC was induced in rats by administering thioacetamide. Additionally, some rats were given 50 mg/kg of ferulic acid three times a week for 16 weeks. Liver function was assessed by measuring serum alpha-fetoprotein (AFP) and examining hepatic tissue sections stained with hematoxylin/eosin or anti-hypoxia induced factor-1α (HIF-1α). The hepatic mRNA and protein levels of HIF-1α, nuclear factor κB (NFκB), tumor necrosis factor-α (TNF-α), mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), cMyc, and cyclin D1 were examined. The results showed that ferulic acid increased the rats' survival rate by reducing serum AFP levels and suppressing hepatic nodules. Furthermore, ferulic acid ameliorated the appearance of vacuolated cytoplasm induced by HCC, reduced apoptotic nuclei, and necrotic nodules. Finally, ferulic acid decreased the expression of HIF-1α, NFκB, TNF-α, mTOR, STAT3, cMyc, and cyclin D1. In conclusion, ferulic acid is believed to possess antitumor properties by inhibiting HCC-induced hypoxia through the suppression of HIF-1α expression. Additionally, it helps in reducing the expression of mTOR, STAT3, cMyc, and cyclin D1, thereby slowing down tumor growth. Lastly, ferulic acid reduced hepatic tissue inflammation by downregulating NFκB and TNF-α.

2.
Hum Exp Toxicol ; 40(4): 707-721, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33030083

RESUMO

Despite wide application of sodium nitrite (SN) as food additive, it exhibits considerable side effects on various body organs at high dose or chronic exposure. The aim of this study was to test whether Glycyrrhizic acid (GA) could ameliorate SN-induced toxicity in lung and submandibular salivary gland (SMG). A sample size of 30 adult male albino rats was randomly allocated into 3 groups. Group 1 served as control group. Rats were treated orally with 80 mg/kg of SN in group 2 or SN preceded by (15 mg/kg) GA in group 3. Lung & SMG tissues were used for oxidative stress assessment, examination of histopathological changes, fibrosis (MTC, TGF-ß and α-SMA) and inflammation (TNF-α, IL-1ß and CD-68). Concurrent administration of GA ameliorated pulmonary and salivary SN-induced toxicity via restoring the antioxidant defense mechanisms with reduction of MDA levels. GA reduced the key regulators of fibrosis TGF-ß and α-SMA and collagen deposition. In addition to reduction of inflammatory cytokine (TNF-α, IL-1ß) and macrophages recruitments, GA amended both pulmonary and salivary morphological changes. The present study proposed GA as a promising natural herb with antioxidant, anti-inflammatory and antifibrotic effects against pulmonary and salivary SN-induced toxicity.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Ácido Glicirrízico/uso terapêutico , Pulmão/efeitos dos fármacos , Glândulas Salivares/efeitos dos fármacos , Nitrito de Sódio/toxicidade , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Fibrose , Glutationa/metabolismo , Ácido Glicirrízico/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia
3.
Mol Vis ; 17: 300-8, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21293735

RESUMO

PURPOSE: Diabetic retinopathy (DR) is a leading cause of blindness in American adults. Over the years, DR has been perceived as a vascular disease characterized by vascular permeability, macular edema, and neovascularization that can lead to blindness. Relatively new research on neurodegeneration is expanding our views of the pathogenesis of DR. Evidence has begun to point to the fact that even before vascular complications begin to manifest, neuronal cell death and dysfunction have already begun. Based on the literature and our own studies, we address whether neuronal death is associated with loss of neurotrophic support due to less production of a given growth factor or due to impairment of its signaling events regardless of the level of the growth factor itself. METHODS: In this article we aimed to review the literature that looks at the neuronal side of DR and whether retinal neurons are adversely affected due to the lack of neurotrophic levels or activity. In particular, we examine the research looking at insulin, insulin-like growth factor, vascular endothelial growth factor, pigment epithelium-derived growth factor, brain-derived neurotrophic factor, and nerve growth factor. RESULTS: Research shows that insulin has neurotrophic properties and that the loss of its pro-survival pathways may have a role in diabetic retinopathy. There is also evidence to suggest that exogenously administered insulin may have a role in the treatment of DR. Insulin-like growth factor has been shown to have a role in retinal neurogenesis and there is early evidence that it may also have neuroprotective effects. While there is evidence of neuroprotective effects of vascular endothelial growth factor, paradoxically, there is also an increased amount of apoptotic activity in retinal neurons despite an increased level of VEGF in the diabetic eye. Further research is necessary to elucidate the exact mechanisms involved. Pigment epithelium derived growth factor has retinal neuroprotective effects and shows evidence that it may be an avenue for future therapeutic use in DR. Brain-derived growth factor has been shown to have neuroprotective effects in the retina and there is also some evidence in diabetic rats that it may have some therapeutic potential in treating DR. Nerve growth factor has also been shown to have neuroprotective effects and research has begun to elucidate some of the pathways and mechanisms through which these effects occur. CONCLUSIONS: Research has shown that there is some degree of neuronal death involved in DR. It is also evident that there are many growth factors involved in this process. Some of these growth factors have shown some potential as future therapeutic targets in DR. These findings should encourage further investigation into the mechanism of these growth factors, their potential for therapy, and the possibility of a new horizon in the clinical care of DR.


Assuntos
Retinopatia Diabética/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neurônios/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , RNA Mensageiro/metabolismo , Ratos , Serpinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA