Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960695

RESUMO

In this paper, a low-cost resin-coated commercial-photo-paper substrate is used to design a printed reconfigurable multiband antenna. The two PIN diodes are used mainly to redistribute the surface current that provides reconfigurable properties to the proposed antenna. The antenna size of 40 mm × 40 mm × 0.44 mm with a partial ground, covers wireless and mobile bands ranging from 1.91 GHz to 6.75 GHz. The parametric analysis is performed to achieve optimized design parameters of the antenna. The U-shaped and C-shaped emitters are meant to function at 2.4 GHz and 5.9 GHz, respectively, while the primary emitter is designed to operate at 3.5 GHz. The proposed antenna achieved peak gain and radiation efficiency of 3.4 dBi and 90%, respectively. Simulated and measured results of the reflection coefficient, radiation pattern, gain, and efficiency show that the antenna design is in favorable agreement. Since the proposed antenna achieved wideband (1.91-6.75 GHz) using PIN diode configuration, using this technique the need for numerous electronic components to provide multiband frequency is avoided.

2.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896656

RESUMO

This article presents a quad-element MIMO antenna designed for multiband operation. The prototype of the design is fabricated and utilizes a vector network analyzer (VNA-AV3672D) to measure the S-parameters. The proposed antenna is capable of operating across three broad frequency bands: 3-15.5 GHz, encompassing the C band (4-8 GHz), X band (8-12.4 GHz), and a significant portion of the Ku band (12.4-15.5 GHz). Additionally, it covers two mm-wave bands, specifically 26.4-34.3 GHz and 36.1-48.9 GHz, which corresponds to 86% of the Ka-band (27-40 GHz). To enhance its performance, the design incorporates a partial ground plane and a top patch featuring a dual-sided reverse 3-stage stair and a straight stick symmetrically placed at the bottom. The introduction of a defected ground structure (DGS) on the ground plane serves to provide a wideband response. The DGS on the ground plane plays a crucial role in improving the electromagnetic interaction between the grounding surface and the top patch, contributing to the wideband characteristics of the antenna. The dimensions of the proposed MIMO antenna are 31.7 mm × 31.7 mm × 1.6 mm. Furthermore, the article delves into the assessment of various performance metrics related to antenna diversity, such as ECC, DG, TARC, MEG, CCL, and channel capacity, with corresponding values of 0.11, 8.87 dB, -6.6 dB, ±3 dB, 0.32 bits/sec/Hz, and 18.44 bits/sec/Hz, respectively. Additionally, the equivalent circuit analysis of the MIMO system is explored in the article. It's worth noting that the measured results exhibit a strong level of agreement with the simulated results, indicating the reliability of the proposed design. The MIMO antenna's ability to exhibit multiband response, good diversity performance, and consistent channel capacity across various frequency bands renders it highly suitable for integration into multi-band wireless devices. The developed MIMO system should be applicable on n77/n78/n79 5G NR (3.3-5 GHz); WLAN (4.9-5.725 GHz); Wi-Fi (5.15-5.85 GHz); LTE5537.5 (5.15-5.925 GHz); WiMAX (5.25-5.85 GHz); WLAN (5.725-5.875 GHz); long-distance radio telecommunication (4-8 GHz; C-band); satellite, radar, space communications and terrestrial broadband (8-12 GHz; X-band); and various satellite communications (27-40 GHz; Ka-band).

3.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630079

RESUMO

A novel compact-slotted four element multiple input multiple output (MIMO) planar monopole antenna is proposed for 5G mmWave N257/N258 and N262 band applications. The antenna, with dimensions of 12 mm × 11.6 mm × 0.508 mm (1.036λo ×1.001λo×0.043λo where λo is computed at lowest cutoff frequency), is fabricated on a Rogers RT/duroid 5880 (tm) substrate with a relative permittivity of 2.2 and a dielectric loss tangent of 0.0009. The suggested antenna consists of four U-shaped radiating elements (patches) on top of the dielectric material and a slotted ground on the bottom. The radiating elements are fed by a 50-ohm microstrip line feed. To improve the impedance performance of the MIMO antenna, a rectangular strip of 1.3 mm × 0.2 mm and a couple of rectangular slots are added to each radiating element. The first operating band at 27.1 GHz, ranging from 25.9 GHz to 27.8 GHz, is achieved by using slotted U-shaped radiating elements. The second operating band at 48.7 GHz, ranging from 47.1 GHz to 49.9 GHz, is obtained by etching hexagonal slots on the ground. The antenna design achieves an isolation of >27 dB through the orthogonal positioning of radiating elements and slots on the ground. The designed antenna operates at 27 GHz (N257/N258) and 48.7 GHz (N262) bands, exhibiting stable radiation patterns, a peak gain of >5.95 dBi, radiation efficiency of >90%, an envelope correlation coefficient of <10-6, a total active reflection coefficient of ≤-10 dB, channel capacity losses of <0.03 bits/s/Hz, and a mean effective gain of ≤-3 dB. The simulated and measured results of the antenna show good agreement, making it well-suited for 5G mmWave communication applications.

4.
Nanomaterials (Basel) ; 13(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446531

RESUMO

A dual-band metasurface (MS) with a wide reception angle operating at Wi-Fi bands (2.4 GHz and 5.4 GHz) is presented for electromagnetic (EM) energy harvesting applications. The MS unit cell comprises a subwavelength circular split ring resonator printed on the low-loss substrate. An air layer is sandwiched between two low-loss substrates to enhance the harvesting efficiency at operating frequencies. One of the main advantages of the proposed MS is that it uses only one harvesting port (via) to channel the captured power to the optimized load (50 Ω), which simplifies the design of a combined power network. According to the results of full-wave EM simulations, the proposed MS has a near-unity efficiency of 97% and 94% at 2.4 GHz and 5.4 GHz, respectively, for capturing the power of incident EM waves with normal incidence. Furthermore, the proposed MS harvester achieves good performance at up to 60° oblique incidence. To validate simulations, the MS harvester with 5 × 5-unit cells is fabricated and tested, and its EM properties are measured, showing good agreement with the simulation results. Because of its high efficiency, the proposed MS harvester is suitable for use in various microwave applications, such as energy harvesting and wireless power transfer.

5.
Micromachines (Basel) ; 14(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37374738

RESUMO

This research work presents a compact design of a Multiple-Input Multiple-Output (MIMO) multiband antenna along with high-isolation characteristics. The presented antenna was designed for 3.50 GHz, 5.50 GHz, and 6.50 GHz frequencies for 5G cellular, 5G WiFi, and WiFi-6, respectively. The fabrication of the aforementioned design was undertaken using FR-4 (1.6 mm thickness) substrate material with a loss tangent and relative permittivity of about 0.025 and 4.30, respectively. The two-element MIMO multiband antenna was miniaturized to 16 × 28 × 1.6 mm3, making it desirable for devices operating in 5G bands. High isolation (>15 dB) was attained with thorough testing without employing a decoupling scheme in the design. Laboratory measurements resulted in a peak gain of 3.49 dBi and an efficiency of around 80% in the entire operating band. The evaluation of the presented MIMO multiband antenna was carried out in terms of the envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), and Channel Capacity Loss (CCL). The measured ECC was less than 0.04, and the DG was well above 9.50. The observed TARC was also lower than -10 dB, and the CCL was below 0.4 bits/s/Hz in the entire operating band. The presented MIMO multiband antenna was analyzed and simulated using CST Studio Suite 2020.

6.
Micromachines (Basel) ; 14(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37241546

RESUMO

In this work, the high-quality factor (Q-factor) and high sensitivity of a circular substrate-integrated waveguide (CSIW) are proposed for the characterization of semisolid materials. The modeled sensor was designed based on the CSIW structure with a mill-shaped defective ground structure (MDGS) to improve measurement sensitivity. The designed sensor oscillates at a single frequency of 2.45 GHz, which was simulated using an Ansys HFSS simulator. Electromagnetic simulation explains the basis of the mode resonance of all two-port resonators. Six variations of the materials under test (SUTs) were simulated and measured, including air (without an SUT), Javanese turmeric, mango ginger, black turmeric, turmeric, and distilled water (DI). A detailed sensitivity calculation was performed for the resonance band at 2.45 GHz. The SUT test mechanism was performed using a polypropylene tube (PP). The samples of dielectric material were filled into the channels of the PP tube and loaded into the center hole of the MDGS. The E-fields around the sensor affect the relationship with the SUTs, resulting in a high Q-factor value. The final sensor had a Q-factor of 700 and a sensitivity of 2.864 at 2.45 GHz. Due to the high sensitivity of the presented sensor for characterization of various semisolid penetrations, the sensor is also of interest for accurate estimation of solute concentration in liquid media. Finally, the relationship between the loss tangent, permittivity, and Q-factor at the resonant frequency were derived and investigated. These results make the presented resonator ideal for the characterization of semisolid materials.

7.
ACS Omega ; 8(16): 14387-14400, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37125111

RESUMO

The voids in their trunk significantly affect tropical trees' health. Both the wood and timber industries may face substantial financial losses because of the lack of an effective technique to inspect the defected trees through deep zonal monitoring. Microwave imaging offers the advantages of mobility, processing time, compactness, and resolution over alternative imaging methods. An ultra-wide band (UWB) imaging system consisting of UWB antennas and a reverse problem algorithm is proposed. Several conditions, such as the size of trunk samples (16-30 cm), number of targets, size of voids, heterogeneity of media, and number of layers, are considered in experimental studies. Based on these studies, cylindrical wooden models with 100 and 140 mm diameters, one void at the center, and three voids in different locations were 3D printed. After proving the system's ability through simulation and measurements on 3D models, a rubber-wood trunk with a length of 75 cm was cut into smaller pieces. The images created utilizing the measured data showed that the system could detect voids in the rubber trunk. Furthermore, the system indicated a high percentage of reliability and repeatability.

8.
Materials (Basel) ; 16(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37176299

RESUMO

In this work, a miniaturized and highly sensitive microwave sensor based on a complementary split-ring resonator (CSRR) is proposed for the detection of liquid materials. The modeled sensor was designed based on the CSRR structure with triple rings (TRs) and a curve feed for improved measurement sensitivity. The designed sensor oscillates at a single frequency of 2.5 GHz, which is simulated using an Ansys HFSS simulator. The electromagnetic simulation explains the basis of the mode resonance of all two-port resonators. Five variations of the liquid media under tests (MUTs) are simulated and measured. These liquid MUTs are as follows: without a sample (without a tube), air (empty tube), ethanol, methanol, and distilled water (DI). A detailed sensitivity calculation is performed for the resonance band at 2.5 GHz. The MUTs mechanism is performed with a polypropylene tube (PP). The samples of dielectric material are filled into PP tube channels and loaded into the CSRR center hole; the E-fields around the sensor affect the relationship with the liquid MUTs, resulting in a high Q-factor value. The final sensor has a Q-factor value and sensitivity of 520 and 7.032 (MHz)/εr) at 2.5 GHz, respectively. Due to the high sensitivity of the presented sensor for characterizing various liquid penetrations, the sensor is also of interest for accurate estimations of solute concentrations in liquid media. Finally, the relationship between the permittivity and Q-factor value at the resonant frequency is derived and investigated. These given results make the presented resonator ideal for the characterization of liquid materials.

9.
Sensors (Basel) ; 23(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36991769

RESUMO

This article proposes the design, fabrication and measurement of a triple-rings complementary split-ring resonator (CSRR) microwave sensor for semi-solid material detection. The triple-rings CSRR sensor was developed based on the CSRR configuration with curve-feed designed together, utilizing a high-frequency structure simulator (HFSS) microwave studio. The designed triple rings CSRR sensor resonates at 2.5 GHz, performs in transmission mode, and senses shift in frequency. Six cases of the sample under tests (SUTs) were simulated and measured. These SUTs are Air (without SUT), Java turmeric, Mango ginger, Black Turmeric, Turmeric, and Di-water, and detailed sensitivity analysis is conducted for the frequency resonant at 2.5 GHz. The semi-solid tested mechanism is undertaken using a polypropylene (PP) tube. The samples of dielectric material are filled into PP tube channels and loaded in the CSRR centre hole. The e-fields near the resonator will affect the interaction with the SUTs. The finalized CSRR triple-rings sensor was incorporated with defective ground structure (DGS) to deliver high-performance characteristics in microstrip circuits, leading to a high Q-factor magnitude. The suggested sensor has a Q-factor of 520 at 2.5 GHz with high sensitivity of about 4.806 and 4.773 for Di-water and Turmeric samples, respectively. The relationship between loss tangent, permittivity, and Q-factor at the resonant frequency has been compared and discussed. These given outcomes make the presented sensor ideal for detecting semi-solid materials.

10.
Materials (Basel) ; 16(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36837126

RESUMO

In this paper, a wideband antenna is proposed for ultra-wideband microwave imaging applications. The antenna is comprised of a tapered slot ground, a rectangular slotted patch and four star-shaped parasitic components. The added slotted patch is shown to be effective in improving the bandwidth and gain. The proposed antenna system provides a realized gain of 6 dBi, an efficiency of around 80% on the radiation bandwidth, and a wide impedance bandwidth (S11 < -10 dB) of 6.3 GHz (from 3.8 to 10.1 GHz). This supports a true wideband operation. Furthermore, the fidelity factor for face-to-face (FtF) direction is 91.6%, and for side by side (SbS) is 91.2%. This proves the excellent directionality and less signal distortion of the designed antenna. These high figures establish the potential use of the proposed antenna for imaging. A heterogeneous breast phantom with dielectric characteristics identical to actual breast tissue with the presence of tumors was constructed for experimental validation. An antenna array of the proposed antenna element was situated over an artificial breast to collect reflected and transmitted waves for tumor characterization. Finally, an imaging algorithm was used to process the retrieved data to recreate the image in order to detect the undesirable tumor object inside the breast phantom.

11.
Micromachines (Basel) ; 14(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36838083

RESUMO

A compact and low-profile curve-feed complementary split-ring resonator (CSRR) microwave sensor for solid material detection is presented in this article. The curve-feed CSRR sensor was developed based on the CSRR configuration with triple rings (TRs) designed together, utilizing a high-frequency structure simulator (HFSS) microwave studio. The designed curve-feed CSRR sensor resonates at 2.5 GHz, performs in transmission mode, and senses shift in frequency. Four varieties of the sample under tests (SUTs) were simulated and measured. These SUTs are Air (without SUT), Roger 5880, Roger 4350, FR4, and detailed sensitivity analysis is being performed for the resonant band at 2.5 GHz. The finalized CSRR curve-feed sensor was integrated with defective ground structure (DGS) to deliver high-performance characteristics in microstrip circuits, which leads to a high Q-factor magnitude. The presented curve-feed sensor has a Q-factor of 520 at 2.5 GHz, with high sensitivity of about 1.072. The relationship between loss tangent, permittivity, and Q-factor at the resonant frequency has been compared and discussed. These disseminated outcomes make the suggested sensor ideal for characterizing solid materials.

12.
Micromachines (Basel) ; 14(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838163

RESUMO

This manuscript examines the design principle and real-world validation of a new miniaturized high-performance flower-shaped radiator (FSR). The antenna prototype consists of an ultracompact square metallic patch of 0.116λ0 × 0.116λ0 (λ0 is the free space wavelength at 3.67 GHz), a rectangular microstrip feed network, and a partial metal ground plane. A novel, effective, and efficient approach based on open circuit loaded stubs is employed to achieve the antenna's optimal performance features. Rectangular, triangular, and circular disc stubs were added to the simple structure of the square radiator, and hence, the FSR configuration was formed. The proposed antenna was imprinted on a low-cost F4B laminate with low profile thickness of 0.018λ0, relative permittivity εr = 2.55, and dielectric loss tangent δ = 0.0018. The designed radiator has an overall small size of 0.256λ0 × 0.354λ0. The parameter study of multiple variables and their influence on the performance results has been extensively studied. Moreover, the impact of different substrate materials, impedance bandwidths, resonance tuning, and impedance matching has also been analyzed. The proposed antenna model has been designed, simulated, and fabricated. The designed antenna exhibits a wide bandwidth of 5.33 GHz ranging from 3.67 to 9.0 GHz at 10 dB return loss, which resulted in an 83.6% fractional impedance bandwidth; a maximum gain of 7.3 dBi at 8.625 GHz; optimal radiation efficiency of 89% at 4.5 GHz; strong intensity current flow across the radiator; and stable monopole-like far-field radiation patterns. Finally, a comparison between the scientific results and newly published research has been provided. The antenna's high-performance simulated and measured results are in a good agreement; hence, they make the proposed antenna an excellent choice for modern smartphones' connectivity with the sub-6 GHz frequency spectrum of modern fifth-generation (5G) mobile communication application.

13.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850599

RESUMO

A detachable miniaturized three-element spirals radiator button antenna integrated with a compact leaky-wave wearable antenna forming a dual-band three-port antenna is proposed. The leaky-wave antenna is fabricated on a denim (εr = 1.6, tan δ = 0.006) textile substrate with dimensions of 0.37 λ0 × 0.25 λ0 × 0.01 λ0 mm3 and a detachable rigid button of 20 mm diameter (on a PTFE substrate εr = 2.01, tan δ = 0.001). It augments users' comfort, making it one of the smallest to date in the literature. The designed antenna, with 3.25 to 3.65 GHz and 5.4 to 5.85 GHz operational bands, covers the wireless local area network (WLAN) frequency (5.1-5.5 GHz), the fifth-generation (5G) communication band. Low mutual coupling between the ports and the button antenna elements ensures high diversity performance. The performance of the specific absorption rate (SAR) and the envelope correlation coefficient (ECC) are also examined. The simulation and measurement findings agree well. Low SAR, <-0.05 of LCC, more than 9.5 dBi diversity gain, dual polarization, and strong isolation between every two ports all point to the proposed antenna being an ideal option for use as a MIMO antenna for communications.

14.
Bioengineering (Basel) ; 10(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36829710

RESUMO

This paper proposes a wideband ultra-compact implantable antenna for a wireless body area network (WBAN). The proposed patch antenna works in the industrial, scientific, and medical (ISM) bands. The proposed patch antenna with an ultra-compact size (5 × 5 × 0.26 mm3) was designed with 29% wide bandwidth (about 670 MHz). This wide bandwidth makes the antenna unaffected by implantation in different human body parts. The miniaturization process passed many steps by adding many slots with different shapes in the radiating element as well as in the ground plane. A 50 Ω coaxial feeding excites the antenna to maintain matching and low power loss. The specific absorption rate (SAR) was calculated for health considerations. The result was within the standard limits of IEEE organizations and the International Commission on Non-Ionizing Radiation Protection (ICNRP). The antenna was tested in tissues with multiple layers (up to seven layers) and at various depths (up to 29 mm). The link margin was calculated, and the proposed antenna enables 100 Kbps of data to be transferred over a distance of 20 m and approximately 1 Mbps over a distance of 7 m. The proposed antenna was fabricated and tested. The measured S11 parameters and the simulated results using the Computer Simulation Technology (CST Studio) simulator were in good agreement.

15.
Sensors (Basel) ; 22(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298362

RESUMO

A printed monopole antenna for millimeter-wave applications in the 5G frequency region is described in this research. As a result, the proposed antenna resonates in three frequency bands that are designated for 5G communication systems, including 28 GHz, 38 GHz, and 60 GHz (V band). For the sake of compactness, the coplanar waveguide (CPW) method is used. The overall size of the proposed tri-band antenna is 4 mm × 3 mm × 0.25 mm. Using a watch strap and human tissue, such as skin, the proposed antenna gives steady results. At 28 GHz, 38 GHz, and 60 GHz, the antenna's gain is found to be 5.29 dB, 7.47 dB, and 9 dB, respectively. The overall simulated radiation efficiency is found to be 85% over the watch strap. Wearable devices are a great fit for the proposed tri-band antenna. The antenna prototype was built and tested in order to verify its performance. It can be observed that the simulated and measured results are in close contact. According to our comparative research, the proposed antenna is a good choice for smart 5G devices because of its small size and simple structure, as well as its high gain and radiation efficiency.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Desenho de Equipamento , Registros
16.
Materials (Basel) ; 15(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36013745

RESUMO

This paper introduces the tunability performance, concept, and analysis of a unique and miniaturized metamaterial (MTM) unit cell covering the upcoming 6G applications. The proposed metamaterial consists of two metallic star-shaped split-ring resonators (SRR). It has a line segment placed in the middle of the structure, which can feature tunable characteristics. The proposed design provides dual resonances of transmission coefficient S21 at 0.248 and 0.383 THz with a significant operating frequency span of 0.207-0.277 and 0.382-0.390 THz, respectively. Moreover, wide-range achievement, negative permittivity, double-negative (DNG) refractive index, and near-zero permeability characteristics have been exhibited in two (z and y) principal wave propagation axes. The resonance frequencies are selective and modified by adjusting the central slotted-strip line length. Furthermore, the metamaterial is constituted on a polyimide substrate while the overall dimensions are 160 × 160 µm2. A numerical simulation of the proposed design is executed in CST microwave studio and has been compared with advanced design software (ADS) to generate the proposed MTM's equivalent circuit, which exhibits a similar transmission coefficient (S21).

17.
Micromachines (Basel) ; 13(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36014136

RESUMO

This paper presents a wideband and high-gain rectangular microstrip array antenna with a new frequency-selective surface (FSS) designed as a reflector for the sub-6 5G applications. The proposed antenna is designed to meet the US Federal Communications Commission (FCC) standard for 5G in the mid-band (3.5-5 GHz) applications. The designed antenna configuration consists of 1 × 4 rectangular microstrip array antenna with an FSS reflector to produce a semi-stable high radiation gain. The modeled FSS delivered a wide stopband transmission coefficient from 3.3 to 5.6 GHz and promised a linearly declining phase over the mid-band frequencies. An equivalent circuit (EC) model is additionally performed to verify the transmission coefficient of the proposed FSS structure for wideband signal propagation. A low-cost FR-4 substrate material was used to fabricate the antenna prototype. The proposed wideband array antenna with an FSS reflector attained a bandwidth of 2.3 GHz within the operating frequency range of 3.5-5.8 GHz, with a fractional bandwidth of 51.12%. A high gain of 12.4 dBi was obtained at 4.1 GHz with an improvement of 4.4 dBi compared to the antenna alone. The gain variation was only 1.0 dBi during the entire mid-band. The total dimension of the fabricated antenna prototype is 10.32 λo × 4.25 λo ×1.295 λo at a resonance frequency of 4.5 GHz. These results make the presented antenna appropriate for 5G sub-6 GHz applications.

18.
Micromachines (Basel) ; 13(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35888865

RESUMO

With the rapid changes in wireless communication systems, indoor wireless communication (IWC) technology has undergone tremendous development. Antennas are crucial components of IWC systems that transmit and receive signals within indoor environments. Thus, the development of indoor technology is highly dependent on the development of indoor antennas. However, indoor environments with limited space require the fewest indoor antenna units and the smallest indoor antenna sizes possible. Hence, indoor antennas with compact size and broad applications have become widely preferred. In an IWC system, circularly polarised (CP) antennas are generally important, especially in dense indoor environments, because compared with linearly polarised (LP) antennas, CP antennas reduce polarisation mismatch and multipath losses. This paper combs through the existing studies related to three-dimensional (3D) geometry (nonplanar) or waveguide indoor antennas and the two common approaches to two-dimensional (2D) geometry (planar) indoor antennas, namely, broadband CP printed monopole antennas (BCPPMAs) and broadband CP printed slot antennas (BCPPSAs). The advantages, disadvantages and limitations of previous works are highlighted as well. These research works are summarised, compared and analysed to understand the recent specifications of BCPPMAs and BCPPSAs to generate the most appropriate design structure suitable for current IWC systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...