Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13990, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633987

RESUMO

We propose ANN-based models to analyze and extract the internal parameters of a Schottky photodiode (SPD) without presenting them with any knowledge of the highly nonlinear thermionic emission (TE) expression of the device current. We train, evaluate and demonstrate the ML models on thirty-six private datasets from three previously published devices, which denote current responses under illumination and ambient temperature of graphene oxide (GO) doped p-Si Schottky barrier diodes (SBDs). The GO doping levels are 0%, 1%, 3%, 5%, and 10%. The illumination ranged from dark (0 mW/cm2) to 30 mW/cm2. The predictions are then made completely at the intensity of 60 mW/cm2. For each diode, some values of the barrier height ([Formula: see text]), ideality factor (n), and series resistance ([Formula: see text]) independently calculated using the Cheung-Cheung method were included in the training dataset. The predictions are done at unspecified intensities on the model development data at 80 and 100 mW/cm2, and on external data at 5% and 20% GO doping which were not part of the development dataset. The ANN achieved a mean square error and mean absolute error score below 0.003 across all datasets. This demonstrates the effective learning capabilities of the ANN models in accurately capturing the photo responses of the photodiodes and accurately predicting the internal parameters of the Schottky Barrier Diodes (SBDs), all without relying on an inherent understanding of the thermionic emission (TE) equation for SBDs. The ANN models achieved high accuracy in this process. The proposed ML models can significantly reduce analysis time in device development cycles and can be applied to other datasets in various fields.

2.
Heliyon ; 9(5): e16269, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37234616

RESUMO

In this article, evidence for the existence of illumination and bias-dependent negative differential conductance (NDC) in Ni-doped Al/ZnO/p-Si Schottky diodes, and the possible mechanism for its origin, are presented. The atomic percentages of Ni doping were 0%, 3%, 5%, and 10%. NDC is observed between -1.5 V to -0.5 V in reverse bias under illumination, but only at certain doping levels and specific forward bias. Furthermore, the devices show excellent optoelectronic characteristics in the photoconductive and photovoltaic modes, with device open circuit voltages ranging from 0.03 V to 0.6 V under illumination.

3.
Polymers (Basel) ; 15(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904398

RESUMO

To limit the dangers posed by Cu(II) pollution, chitosan-nanohybrid derivatives were developed for selective and rapid copper adsorption. A magnetic chitosan nanohybrid (r-MCS) was obtained via the co-precipitation nucleation of ferroferric oxide (Fe3O4) co-stabilized within chitosan, followed by further multifunctionalization with amine (diethylenetriamine) and amino acid moieties (alanine, cysteine, and serine types) to give the TA-type, A-type, C-type, and S-type, respectively. The physiochemical characteristics of the as-prepared adsorbents were thoroughly elucidated. The superparamagnetic Fe3O4 nanoparticles were mono-dispersed spherical shapes with typical sizes (~8.5-14.7 nm). The adsorption properties toward Cu(II) were compared, and the interaction behaviors were explained with XPS and FTIR analysis. The saturation adsorption capacities (in mmol.Cu.g-1) have the following order: TA-type (3.29) > C-type (1.92) > S-type (1.75) > A-type(1.70) > r-MCS (0.99) at optimal pH0 5.0. The adsorption was endothermic with fast kinetics (except TA-type was exothermic). Langmuir and pseudo-second-order equations fit well with the experimental data. The nanohybrids exhibit selective adsorption for Cu(II) from multicomponent solutions. These adsorbents show high durability over multiple cycles with desorption efficiency > 93% over six cycles using acidified thiourea. Ultimately, QSAR tools (quantitative structure-activity relationships) were employed to examine the relationship between essential metal properties and adsorbent sensitivities. Moreover, the adsorption process was described quantitatively, using a novel three-dimensional (3D) nonlinear mathematical model.

4.
Chem Rec ; 23(1): e202200143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36285706

RESUMO

The increasing demand for searching highly efficient and robust technologies in the context of sustainable energy production totally rely onto the cost-effective energy efficient production technologies. Solar power technology in this regard will perceived to be extensively employed in a variety of ways in the future ahead, in terms of the combustion of petroleum-based pollutants, CO2 reduction, heterogeneous photocatalysis, as well as the formation of unlimited and sustainable hydrogen gas production. Semiconductor-based photocatalysis is regarded as potentially sustainable solution in this context. g-C3 N4 is classified as non-metallic semiconductor to overcome this energy demand and enviromental challenges, because of its superior electronic configuration, which has a median band energy of around 2.7 eV, strong photocatalytic stability, and higher light performance. The photocatalytic performance of g-C3 N4 is perceived to be inadequate, owing to its small surface area along with high rate of charge recombination. However, various synthetic strategies were applied in order to incorporate g-C3 N4 with different guest materials to increase photocatalytic performance. After these fabrication approaches, the photocatalytic activity was enhanced owing to generation of photoinduced electrons and holes, by improving light absorption ability, and boosting surface area, which provides more space for photocatalytic reaction. In this review, various metals, non-metals, metals oxide, sulfides, and ferrites have been integrated with g-C3 N4 to form mono, bimetallic, heterojunction, Z-scheme, and S-scheme-based materials for boosting performance. Also, different varieties of g-C3 N4 were utilized for different aspects of photocatalytic application i. e., water reduction, water oxidation, CO2 reduction, and photodegradation of dye pollutants, etc. As a consequence, we have assembled a summary of the latest g-C3 N4 based materials, their uses in solar energy adaption, and proper management of the environment. This research will further well explain the detail of the mechanism of all these photocatalytic processes for the next steps, as well as the age number of new insights in order to overcome the current challenges.

5.
Polymers (Basel) ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365497

RESUMO

Advanced wireless communication technology claims miniaturized, reconfigurable, highly efficient, and flexible meta-devices for various applications, including conformal implementation, flexible antennas, wearable sensors, etc. Therefore, bearing these challenges in mind, a dual-band flexible metamaterial absorber (MMA) with frequency-reconfigurable characteristics is developed in this research. The geometry of the proposed MMA comprises a square patch surrounded by a square ring, which is mounted over a copper-backed flexible dielectric substrate. The top surface of the MMA is made of silver nanoparticle ink and a middle polyethylene terephthalate (PET) substrate backed by a copper groundsheet. The proposed MMA shows an absorption rate of above 99% at 24 and 35 GHz. In addition, the absorption features are also studied for different oblique incident angles, and it is found that the proposed MMA remains stable for θ = 10-50°. The frequency tunability characteristics are achieved by stimulating the capacitance of the varactor diode, which connects the inner patch with the outer ring. To justify the robustness and conformability of the presented MMA, the absorption features are also studied by bending the MMA over different radii of an arbitrary cylinder. Moreover, a multiple-reflection interference model is developed to justify the simulated and calculated absorption of the proposed MMA. It is found that the simulated and calculated results are in close agreement with each other. This kind of MMA could be useful for dual-band sensing and filtering operations.

6.
Nanomaterials (Basel) ; 12(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080035

RESUMO

Two-dimensional (2D) materials have garnered considerable attention due to their advantageous properties, including tunable bandgap, prominent carrier mobility, tunable response and absorption spectral band, and so forth. The above-mentioned properties ensure that 2D materials hold great promise for various high-performance infrared (IR) applications, such as night vision, remote sensing, surveillance, target acquisition, optical communication, etc. Thus, it is of great significance to acquire better insight into IR applications based on 2D materials. In this review, we summarize the recent progress of 2D materials in IR light emission device applications. First, we introduce the background and motivation of the review, then the 2D materials suitable for IR light emission are presented, followed by a comprehensive review of 2D-material-based spontaneous emission and laser applications. Finally, further development directions and challenges are summarized. We believe that milestone investigations of 2D-material-based IR light emission applications will emerge soon, which are beneficial for 2D-material-based nano-device commercialization.

8.
J Colloid Interface Sci ; 627: 621-629, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35872419

RESUMO

The development of copolymerized carbon nitride (CN)-based photocatalysts may support advances in photocatalytic overall water splitting. However, the recombination of charge carriers is the main bottleneck that reduces its overall photocatalytic activity. To overcome this problem, the construction of heterojunction technology has emerged as an effective approach to reduce the charge carrier recombination, thereby improving charge separation and transport efficiency. In this work, an innovative heterojunction was prepared between Quinolinic acid (QA) modified CN (CN-QAx) and novel nanorod-shaped bismuth vanadate (BiVO4) (BiVO4/CN-QAx) for overall water splitting through a simple in-situ solvent evaporation technique. The obtained results show that the synthesized samples have efficient and improved activities for releasing H2 (862.1 µmol/h) and O2 (31.58 µmol/h) under visible light irradiation. Furthermore, an exceptional apparent quantum yield (AQY) of 64.52 % has been recorded for BiVO4/CN-QA7.0 at 420 nm, which might be due to the substantial isolation of photoinducedcharge carriers. Therefore, this work opens up a new channel toward efficient CN-based photocatalysts in the sustainable energy production processes.

9.
Polymers (Basel) ; 14(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808614

RESUMO

Nuclear power facilities are being expanded to satisfy expanding worldwide energy demand. Thus, uranium recovery from secondary resources has become a hot topic in terms of environmental protection and nuclear fuel conservation. Herein, a mesoporous biosorbent of a hybrid magnetic-chitosan nanocomposite functionalized with cysteine (Cys) was synthesized via subsequent heterogeneous nucleation for selectively enhanced uranyl ion (UO22+) sorption. Various analytical tools were used to confirm the mesoporous nanocomposite structural characteristics and confirm the synthetic route. The characteristics of the synthesized nanocomposite were as follows: superparamagnetic with saturation magnetization (MS: 25.81 emu/g), a specific surface area (SBET: 42.56 m2/g) with a unipore mesoporous structure, an amine content of ~2.43 mmol N/g, and a density of ~17.19/nm2. The experimental results showed that the sorption was highly efficient: for the isotherm fitted by the Langmuir equation, the maximum capacity was about 0.575 mmol U/g at pH range 3.5-5.0, and Temperature (25 ± 1 °C); further, there was excellent selectivity for UO22+, likely due to the chemical valent difference. The sorption process was fast (~50 min), simulated with the pseudo-second-order equation, and the sorption half-time (t1/2) was 3.86 min. The sophisticated spectroscopic studies (FTIR and XPS) revealed that the sorption mechanism was linked to complexation and ion exchange by interaction with S/N/O multiple functional groups. The sorption was exothermic, spontaneous, and governed by entropy change. Desorption and regeneration were carried out using an acidified urea solution (0.25 M) that was recycled for a minimum of six cycles, resulting in a sorption and desorption efficiency of over 91%. The as-synthesized nanocomposite's high stability, durability, and chemical resistivity were confirmed over multiple cycles using FTIR and leachability. Finally, the sorbent was efficiently tested for selective uranium sorption from multicomponent acidic simulated nuclear solution. Owing to such excellent performance, the Cys nanocomposite is greatly promising in the uranium recovery field.

10.
Chemosphere ; 304: 135253, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35697101

RESUMO

Herein, efficient and potential chelating α-aminophosphonate based sorbents (AP-) derived from three different amine origins (aniline/anthranilic acid/O-phenylenediamine) to form AP-H, carboxylated and aminated enhanced aminophosphonate as AP-H, AP-COOH, and AP-NH2 were synthesized via a facile method. The structure of the synthesized sorbents was elucidated using different techniques; elemental analysis (CHNP/O), FT-IR, NMR (1H-, 13C and 31P NMR), TGA and BET. The fabricated sorbents were exploited for Hg(II) removal from aqueous solution via sorption properties. Isotherm fitted by Langmuir equation: the maximum sorption capacities at optimum pH 5.5, and T:25 ± 1 °C, were found to be 1.33, 1.23, and 1.15 mmol Hg g-1 for AP-COOH, AP-NH2, AP-H, respectively, which is roughly correlated with the active sites density and the hard/soft characteristics of adsorbents' reactive groups. Metal-ligand binding affinities are qualitatively rationalized in terms of hard and soft acids and bases (HSAB) theory. The interaction of Hg(II) (soft) has a stronger affinity to AP-COOH can be considered a softer base compared with reference material (AP-H) over than AP-NH2 (hard). This sequence result showed opposite trends consistent with their reciprocal properties according to the steric effect modulates and the specific surface area. Thermodynamics analysis for absolute values of ΔH°, ΔS° and ΔG° afford the selectivity towards Hg(II) sorption with the following order: AP-COOH > AP-NH2 >AP-H. Elution and regeneration was carried out by HCl solution and recycled for a minimum of five cycles, the sorption and desorption efficiencies are greater than 91%. Such sorbents exhibit good durability, stability and promising potential for Hg(II) removal. Finally, a new modelling technique for quantitative non-linear description and comparison of equivalent geographical positions in 3D space of extended relationships. Exothermic and spontaneous behavior were observed using a proposed Floatotherm that included the Van't Hoff parameters model.


Assuntos
Mercúrio , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Purificação da Água/métodos
11.
Front Chem ; 10: 836678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592306

RESUMO

Co-encapsulated econazole nitrate-triamcinolone acetonide loaded biocompatible, physically stable, and non-irritating mesoporous silica nanoparticles (EN-TA-loaded MSNs) were prepared and optimized by using a central composite rotatable design (CCRD) for providing better therapeutic efficacy against commonly prevailed resistant fungal infections. These drugs loaded MSNs can significantly overcome the deficiencies and problems like short duration of action, requirement of frequent administration, erythema, and burning sensation and irritation associated with conventional drug delivery systems. The stability of optimized drugs loaded MSNs prepared with 100 gm of oil at pH 5.6 with a stirring time of 2 h was confirmed from a zeta potential value of -25 mV. The remarkable compatibility of formulation ingredients was depicted by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) spectra while scanning electron microscopy (SEM) and size analysis represented a very fine size distribution of nanoparticles ranging from 450-600 nm. The CCRD clearly predicted that the optimized parameters of drugs loaded MSNs have better values of percentage yield (85%), EN release (68%), and TA release (70%). Compared to pure drugs, the decreased cytotoxicity of EN-TA-loaded MSNs was quite evident because they showed a cell survival rate of 90%, while in the case of pure drugs, the survival rate was 85%. During in vivo antifungal testing against Candida albicans performed on three different groups, each consisting of six rabbits, the EN-TA-loaded MSNs were relatively superior in eradicating the fungal infection as a single animal exhibited a positive culture test. Rapid recovery of fungal infection and a better therapeutic effect of EN-TA-loaded MSN were quite evident in wound healing and histopathology studies. Likewise, on the 14th day, a larger inhibitory zone was measured for optimized nanoparticles (15.90 mm) compared to the suspension of pure drugs (13.90 mm). In skin irritation studies, MSNs did not show a grade of erythema compared to pure drugs, which showed a four-fold grade of erythema. As a result, MSNs loaded with combination therapy seem to have the potential of improving patient compliance and tolerability by providing enhanced synergistic antifungal effectiveness at a reduced dose with accelerated wound healing and reduced toxicity of therapeutics.

12.
J Phys Chem Lett ; 13(21): 4695-4700, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35605285

RESUMO

Step-scheme heterojunctions formed between two firmly bound photocatalysts facilitate charge separation due to interfacial charge transfer, which is usually illustrated by the gain or loss of electrons in the constituent photocatalysts characterized by in situ irradiated X-ray photoelectron spectroscopy. This technique provides a steady-state view of charge distribution but overlooks the transient and complex dynamics of charge transfer, trapping, and recombination. To provide a molecular-level and dynamic view of these processes, we investigated the behaviors of photogenerated charge carriers within an inorganic/organic TiO2/polydopamine S-scheme heterojunction using ultrafast transient absorption spectroscopy and time-resolved photoluminescence spectroscopy. We found the interfacial charge transfer within the step-scheme heterojunction occurred at a smaller shorter time scale than recombination, leading to efficient charge separation. Moreover, the charge-discharge property of polydopamine induces electron backflow, which should be avoided in practical photocatalytic applications. The composite showed higher photocatalytic H2O2-production activities due to faster H2O2 formation and suppressed H2O2 decomposition.

13.
ACS Sens ; 7(4): 1213-1221, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35394756

RESUMO

The (100) surface of α-MoO3 should possess overwhelmingly more exposed Mo atoms than the (010), and the exposed Mo has been extensively considered as an active site for amine adsorption. However, α-MoO3 (100) has drawn little attention concerning the amine sensing mechanism. In this research, adsorption of ammonia (NH3), monomethylamine (MMA), dimethylamine (DMA), and trimethylamine (TMA) is systematically investigated by density functional theory (DFT). All four of these molecules have high affinity to α-MoO3 (100) through interaction between the N and the exposed Mo, and the affinity is mainly influenced by both the characteristics of the molecules and the geometric environment of the surface active site. Adsorption and dissociation of water and oxygen molecule on stoichiometric and defective α-MoO3 (100) surfaces are then simulated to fully understand the surface chemistry of α-MoO3 (100) in practical conditions. At low temperature, α-MoO3 (100) must be covered with a large number of water molecules; the water can desorb or dissociate into hydroxyl groups at high temperature. Oxygen vacancy (VO) can be generated through the annealing process during sensor device fabrication; VO must be filled with an O2 molecule, which can further interact with adsorbed water nearby to form hydroxyl groups. According to this research, α-MoO3 (100) must be the active surface for amine sensing and its surface chemistry is well understood. In the near future, further reaction and interaction will be simulated at α-MoO3 (100), and much more attention should be paid to α-MoO3 (100) not only theoretically but also experimentally.

14.
Chem Rec ; 22(7): e202100310, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35138017

RESUMO

Being one of the foremost enticing and intriguing innovations, heterogeneous photocatalysis has also been used to effectively gather, transform, and conserve sustainable sun's radiation for the production of efficient and clean fossil energy as well as a wide range of ecological implications. The generation of solar fuel-based water splitting and CO2 photoreduction is excellent for generating alternative resources and reducing global warming. Developing an inexpensive photocatalyst can effectively split water into hydrogen (H2 ), oxygen (O2 ) sources, and carbon dioxide (CO2 ) into fuel sources, which is a crucial problem in photocatalysis. The metal-free g-C3 N4 photocatalyst has a high solar fuel generation potential. This review covers the most recent advancements in g-C3 N4 preparation, including innovative design concepts and new synthesis methods, and novel ideas for expanding the light absorption of pure g-C3 N4 for photocatalytic application. Similarly, the main issue concerning research and prospects in photocatalysts based g-C3 N4 was also discussed. The current dissertation provides an overview of comprehensive understanding of the exploitation of the extraordinary systemic and characteristics, as well as the fabrication processes and uses of g-C3 N4 .

15.
Antibiotics (Basel) ; 11(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35052930

RESUMO

DNA gyrase and topoisomerase IV are proven to be validated targets in the design of novel antibacterial drugs. In this study, we report the antibacterial evaluation and molecular docking studies of previously synthesized two series of cyclic diphenylphosphonates (1a-e and 2a-e) as DNA gyrase inhibitors. The synthesized compounds were screened for their activity (antibacterial and DNA gyrase inhibition) against ciprofloxacin-resistant E.coli and Klebsiella pneumoniae clinical isolates having mutations (deletion and substitution) in QRDR region of DNA gyrase. The target compound (2a) that exhibited the most potent activity against ciprofloxacin Gram-negative clinical isolates was selected to screen its inhibitory activity against DNA gyrase displayed IC50 of 12.03 µM. In addition, a docking study was performed with inhibitor (2a), to illustrate its binding mode in the active site of DNA gyrase and the results were compatible with the observed inhibitory potency. Furthermore, the docking study revealed that the binding of inhibitor (2a) to DNA gyrase is mediated and modulated by divalent Mg2+ at good binding energy (-9.08 Kcal/mol). Moreover, structure-activity relationships (SARs) demonstrated that the combination of hydrazinyl moiety in conjunction with the cyclic diphenylphosphonate based scaffold resulted in an optimized molecule that inhibited the bacterial DNA gyrase by its detectable effect in vitro on gyrase-catalyzed DNA supercoiling activity.

16.
ACS Nano ; 16(2): 3059-3069, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35048704

RESUMO

Despite the emerging interest in research and development of Ti3CN MXene nanosheet (NS)-based optoelectronic devices, there is still a lack of in-depth studies of the underlying photophysical processes, like carrier relaxation dynamics and nonlinear photon absorption, operating in such devices, hindering their further and precise design. In this paper, we attempt to remedy the situation by fabricating few-layer Ti3CN NSs via combining selective etching and molecular intercalation and by investigating the carrier relaxation possesses and broadband nonlinear optical responses via transient absorption and Z-scan techniques. These results are complemented by first-principle theoretical analyses of the optical properties. Both saturable absorption and reverse saturable absorption phenomena are observed due to multiphoton absorption effects. The analysis of these results adds to the understanding of the basic photophysical processes, which is anticipated to be beneficial for the further design of MXene-based devices.

18.
Nanomaterials (Basel) ; 11(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34947595

RESUMO

Light-driven heterogeneous photocatalysis has gained great significance for generating solar fuel; the challenging charge separation process and sluggish surface catalytic reactions significantly restrict the progress of solar energy conversion using a semiconductor photocatalyst. Herein, we propose a novel and feasible strategy to incorporate dihydroxy benzene (DHB) as a conjugated monomer within the framework of urea containing CN (CNU-DHBx) to tune the electronic conductivity and charge separation due to the aromaticity of the benzene ring, which acts as an electron-donating species. Systematic characterizations such as SPV, PL, XPS, DRS, and TRPL demonstrated that the incorporation of the DHB monomer greatly enhanced the photocatalytic CO2 reduction of CN due to the enhanced charge separation and modulation of the ionic mobility. The significantly enhanced photocatalytic activity of CNU-DHB15.0 in comparison with parental CN was 85 µmol/h for CO and 19.92 µmol/h of the H2 source. It can be attributed to the electron-hole pair separation and enhance the optical adsorption due to the presence of DHB. Furthermore, this remarkable modification affected the chemical composition, bandgap, and surface area, encouraging the controlled detachment of light-produced photons and making it the ideal choice for CO2 photoreduction. Our research findings potentially offer a solution for tuning complex charge separation and catalytic reactions in photocatalysis that could practically lead to the generation of artificial photocatalysts for efficient solar energy into chemical energy conversion.

19.
Polymers (Basel) ; 13(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34833342

RESUMO

Among chemical water pollutants, Cr(VI) is a highly toxic heavy metal; solar photocatalysis is a cost-effective method to reduce Cr(VI) to innocuous Cr(III). In this research work, an efficient and economically feasible ZnO/CuO nanocomposite was grafted onto the polyester fabric ZnO/CuO/PF through the SILAR method. Characterization by SEM, EDX, XRD, and DRS confirmed the successful grafting of highly crystalline, solar active nanoflakes of ZnO/CuO nanocomposite onto the polyester fabric. The grafting of the ZnO/CuO nanocomposite was confirmed by FTIR analysis of the ZnO/CuO/PF membrane. A solar photocatalytic reduction reaction of Cr(VI) was carried out by ZnO/CuO/PF under natural sunlight (solar flux 5-6 kW h/m2). The response surface methodology was employed to determine the interactive effect of three reaction variables: initial concentration of Cr(VI), pH, and solar irradiation time. According to UV/Vis spectrophotometry, 97% of chromium was removed from wastewater in acidic conditions after four hours of sunlight irradiation. ZnO/CuO/PF demonstrated reusability for 11 batches of wastewater under natural sunlight. Evaluation of Cr(VI) reduction was also executed by complexation of Cr(VI) and Cr(III) with 1, 5-diphenylcarbazide. The total percentage removal of Cr after solar photocatalysis was carried out by AAS of the wastewater sample. The ZnO/CuO/PF enhanced the reduction of Cr(VI) metal from wastewater remarkably.

20.
Membranes (Basel) ; 11(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34677552

RESUMO

Diffusion dialysis (DD) using anion exchange membranes (AEM) is an effective process for acid recovery and requires the preparation of suitable materials for AEMs, characterized by unique ions transport properties. In this work, novel AEMs composed of quaternized diaminobutane (QDAB) and poly(vinyl alcohol) (PVA) were cross-linked by tetraethoxysilane (TEOS) via the sol-gel process. The prepared AEMs were systematically characterized by Fourier-transform infrared (FTIR) spectroscopy, ion-exchange capacity (IEC) analysis, thermo gravimetric analysis (TGA), water uptake, linear expansion ratio (LER), and mechanical strength determination, scanning electron microscopy (SEM), and DD performance analysis for acid recovery using a hydrochloric acid/iron chloride (HCl/FeCl2) aqueous mixture and varying the QDAB content. The prepared AEMs exhibited IEC values between 0.86 and 1.46 mmol/g, water uptake values within 71.3 and 47.8%, moderate thermal stability, tensile strength values in the range of 26.1 to 41.7 MPa, and elongation from 68.2 to 204.6%. The dialysis coefficient values were between 0.0186 and 0.0295 m/h, whereas the separation factors range was 24.7-44.1 at 25 °C. The prepared membranes have great potential for acid recovery via diffusion dialysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...