Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 10(9): 61, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535639

RESUMO

Amplification of specific cancer genes leads to their over-expression contributing to tumor growth, spread, and drug resistance. Little is known about the ability of these amplified oncogenes to augment the expression of cancer genes through post-transcriptional control. The AU-rich elements (ARE)-mediated mRNA decay is compromised for many key cancer genes leading to their increased abundance and effects. Here, we performed a post-transcriptional screen for frequently amplified cancer genes demonstrating that ERBB2/Her2 overexpression was able to augment the post-transcriptional effects. The ERBB1/2 inhibitor, lapatinib, led to the reversal of the aberrant ARE-mediated process in ERBB2-amplified breast cancer cells. The intersection of overexpressed genes associated with ERBB2 amplification in TCGA datasets with ARE database (ARED) identified ERBB2-associated gene cluster. Many of these genes were over-expressed in the ERBB2-positive SKBR3 cells compared to MCF10A normal-like cells, and were under-expressed due to ERBB2 siRNA treatment. Lapatinib accelerated the ARE-mRNA decay for several ERBB2-regulated genes. The ERBB2 inhibitor decreased both the abundance and stability of the phosphorylated inactive form of the mRNA decay-promoting protein, tristetraprolin (ZFP36/TTP). The ERBB2 siRNA was also able to reduce the phosphorylated ZFP36/TTP form. In contrast, ectopic expression of ERBB2 in MCF10A or HEK293 cells led to increased abundance of the phosphorylated ZFP36/TTP. The effect of ERBB2 on TTP phosphorylation appeared to be mediated via the MAPK-MK2 pathway. Screening for the impact of other amplified cancer genes in HEK293 cells also demonstrated that EGFR, AKT2, CCND1, CCNE1, SKP2, and FGFR3 caused both increased abundance of phosphorylated ZFP36/TTP and ARE-post-transcriptional reporter activity. Thus, specific amplified oncogenes dysregulate post-transcriptional ARE-mediated effects, and targeting the ARE-mediated pathway itself may provide alternative therapeutic approaches.

2.
Mol Oncol ; 15(8): 2120-2139, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33411958

RESUMO

Dysfunctions in post-transcriptional control are observed in cancer and chronic inflammatory diseases. Here, we employed a kinome inhibitor library (n = 378) in a reporter system selective for 3'-untranslated region-AU-rich elements (ARE). Fifteen inhibitors reduced the ARE-reporter activity; among the targets is the polo-like kinase 1 (PLK1). RNA-seq experiments demonstrated that the PLK1 inhibitor, volasertib, reduces the expression of cytokine and cell growth ARE mRNAs. PLK1 inhibition caused accelerated mRNA decay in cancer cells and was associated with reduced phosphorylation and stability of the mRNA decay-promoting protein, tristetraprolin (ZFP36/TTP). Ectopic expression of PLK1 increased abundance and stability of high molecular weight of ZFP36/TTP likely of the phosphorylated form. PLK1 effect was associated with the MAPK-MK2 pathway, a major regulator of ARE-mRNA stability, as evident from MK2 inhibition, in vitro phosphorylation, and knockout experiments. Mutational analysis demonstrates that TTP serine 186 is a target for PLK1 effect. Treatment of mice with the PLK1 inhibitor reduced both ZFP36/TTP phosphorylation in xenograft tumor tissues, and the tumor size. In cancer patients' tissues, PLK1/ARE-regulated gene cluster was overexpressed in solid tumors and associated with poor survival. The data showed that PLK1-mediated post-transcriptional aberration could be a therapeutic target.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Processamento Pós-Transcricional do RNA , Regiões 3' não Traduzidas , Animais , Humanos , Camundongos , Camundongos Nus , Fosforilação , Pteridinas/farmacologia , Tristetraprolina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
3.
Eur Respir J ; 54(1)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31073086

RESUMO

BACKGROUND: Pulmonary fibrosis is one of the leading indications for lung transplantation. The disease, which is of unknown aetiology, can be progressive, resulting in distortion of the extracellular matrix (ECM), inflammation, fibrosis and eventual death. METHODS: 13 patients born to consanguineous parents from two unrelated families presenting with interstitial lung disease were clinically investigated. Nine patients developed respiratory failure and subsequently died. Molecular genetic investigations were performed on patients' whole blood or archived tissues, and cell biological investigations were performed on patient-derived fibroblasts. RESULTS: The combination of a unique pattern of early-onset lung fibrosis (at 12-15 years old) with distinctive radiological findings, including 1) traction bronchiectasis, 2) intralobular septal thickening, 3) shrinkage of the secondary pulmonary lobules mainly around the bronchovascular bundles and 4) early type 2 respiratory failure (elevated blood carbon dioxide levels), represents a novel clinical subtype of familial pulmonary fibrosis. Molecular genetic investigation of families revealed a hypomorphic variant in S100A3 and a novel truncating mutation in S100A13, both segregating with the disease in an autosomal recessive manner. Family members that were either heterozygous carriers or wild-type normal for both variants were unaffected. Analysis of patient-derived fibroblasts demonstrated significantly reduced S100A3 and S100A13 expression. Further analysis demonstrated aberrant intracellular calcium homeostasis, mitochondrial dysregulation and differential expression of ECM components. CONCLUSION: Our data demonstrate that digenic inheritance of mutations in S100A3 and S100A13 underlie the pathophysiology of pulmonary fibrosis associated with a significant reduction of both proteins, which suggests a calcium-dependent therapeutic approach for management of the disease.


Assuntos
Pulmão/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/fisiopatologia , Proteínas S100/genética , Adolescente , Criança , Saúde da Família , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Masculino , Mutação , Linhagem , Fibrose Pulmonar/diagnóstico , Arábia Saudita
4.
Sci Signal ; 11(518)2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463777

RESUMO

The enzyme pyrimidine 5'-nucleotidase (NT5C3A), which mediates nucleotide catabolism, was previously thought to be restricted to blood cells. We showed that expression of the gene encoding NT5C3A was induced by type I interferons (IFNs) in multiple cell types and that NT5C3A suppressed cytokine production through inhibition of the nuclear factor κB (NF-κB) pathway. NT5C3A expression required both an intronic IFN-stimulated response element and the IFN-stimulated transcription factor IRF1. Overexpression of NT5C3A, but not of its catalytic mutants, suppressed IL-8 production by HEK293 cells. Whereas knockdown of NT5C3A enhanced tumor necrosis factor (TNF)-stimulated IL-8 production, it reduced the IFN-mediated suppression of Il8 expression. Overexpression of NT5C3A increased the abundance of NAD+ and the activation of the sirtuins SIRT1 and SIRT6, which are NAD+-dependent deacetylases. NT5C3A-stimulated sirtuin activity resulted in deacetylation of histone H3 and the NF-κB subunit RelA (also known as p65), both of which were associated with the proximal region of the Il8 promoter, thus repressing the transcription of Il8 Together, these data identify an anti-inflammatory pathway that depends on the catalytic activity of NT5C3A and functions as a negative feedback regulator of inflammatory cytokine signaling.


Assuntos
5'-Nucleotidase/genética , Citocinas/metabolismo , Epigênese Genética , Glicoproteínas/genética , Interferons/metabolismo , Transdução de Sinais/genética , 5'-Nucleotidase/metabolismo , Acetilação , Citosol/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glicoproteínas/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
Genesis ; 54(10): 519-533, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27506447

RESUMO

The mouse zinc-finger gene Zfp521 (also known as ecotropic viral insertion site 3; Evi3; and ZNF521 in humans) has been identified as a B-cell proto-oncogene, causing leukemia in mice following retroviral insertions in its promoter region that drive Zfp521 over-expression. Furthermore, ZNF521 is expressed in human hematopoietic cells, and translocations between ZNF521 and PAX5 are associated with pediatric acute lymphoblastic leukemia. However, the regulatory factors that control Zfp521 expression directly have not been characterized. Here we demonstrate that the transcription factors SPI1 (PU.1) and HOXC13 synergistically regulate Zfp521 expression, and identify the regions of the Zfp521 promoter required for this transcriptional activity. We also show that SPI1 and HOXC13 activate Zfp521 in a dose-dependent manner. Our data support a role for this regulatory mechanism in vivo, as transgenic mice over-expressing Hoxc13 in the fetal liver show a strong correlation between Hoxc13 expression levels and Zfp521 expression. Overall these experiments provide insights into the regulation of Zfp521 expression in a nononcogenic context. The identification of transcription factors capable of activating Zfp521 provides a foundation for further investigation of the regulatory mechanisms involved in ZFP521-driven cell differentiation processes and diseases linked to Zfp521 mis-expression.


Assuntos
Proteínas de Homeodomínio/genética , Leucemia/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Animais , Linfócitos B/metabolismo , Diferenciação Celular/genética , Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Humanos , Leucemia/patologia , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX5/biossíntese , Fator de Transcrição PAX5/genética , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/biossíntese , Retroviridae/genética , Transativadores/biossíntese , Fatores de Transcrição/biossíntese
6.
Nucleic Acids Res ; 40(16): 7739-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718976

RESUMO

The p21(Cip1/WAF1) plays an important role in cell-cycle arrest. Here, we find that RNase L regulates p21-mediated G(1) growth arrest in AU-rich elements-dependent manner. We found a significant loss of p21 mRNA expression in RNASEL(-/-) MEFs and that the overexpression of RNase L in HeLa cells induces p21 mRNA expression. The p21 mRNA half-life significantly changes as a result of RNase L modulation, indicating a post-transcriptional effect. Indeed, we found that RNase L promotes tristetraprolin (TTP/ZFP36) mRNA decay. This activity was not seen with dimerization- and nuclease-deficient RNase L mutants. Deficiency in TTP led to increases in p21 mRNA and protein. With induced ablation of RNase L, TTP mRNA and protein expressions were higher, while p21 expression became reduced. We further establish that TTP, but not C124R TTP mutant, binds to, and accelerates the decay of p21 mRNA. The p21 mRNA half-life was prolonged in TTP(-/-) MEFs. The TTP regulation of p21 mRNA decay required functional AU-rich elements. Thus, we demonstrate a novel mechanism of regulating G(1) growth arrest by an RNase L-TTP-p21 axis.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Endorribonucleases/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Tristetraprolina/metabolismo , Animais , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/metabolismo
7.
Methods Mol Biol ; 820: 91-104, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22131027

RESUMO

Cytokine biosynthesis is tightly regulated by a number of processes, including gene expression control. Posttranscriptional control of cytokine gene expression offers a fine-tuning mechanism that contributes not only to transient biosynthesis of cytokines, but also helps in rapid and early initiation of the cytokine response. Deregulation of cytokine biosynthesis has been associated with a number of disease conditions, including autoimmune diseases, cancer, and others. Thus, there is a need for accurate measurement of posttranscriptional gene expression events in cytokine research. The method described here is a cell-based GFP assay that quantitatively measures posttranscriptional effects. This method is used for assessing the effects of modulators and conditions that lead to changes in posttranscriptional gene expression during cytokine production or for assessment of cytokine action on posttranscriptional events of gene expression.


Assuntos
Regiões 3' não Traduzidas , Clonagem Molecular/métodos , Citocinas/genética , Proteínas de Fluorescência Verde/genética , Processamento Pós-Transcricional do RNA/genética , Biologia Computacional , Citocinas/metabolismo , Primers do DNA/genética , DNA Complementar/biossíntese , DNA Complementar/genética , Eletroforese em Gel de Ágar , Células HEK293 , Humanos , RNA/isolamento & purificação , Estabilidade de RNA/genética , Transfecção/métodos
8.
Nucleic Acids Res ; 37(11): 3612-24, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19359363

RESUMO

The RNA-binding protein, HuR, is involved in the stabilization of AU-rich element-containing mRNAs with products that are involved in cell-cycle progression, cell differentiation and inflammation. We show that there are multiple polyadenylation variants of HuR mRNA that differ in their abundance, using both bioinformatics and experimental approaches. A polyadenylation variant with distal poly(A) signal is a rare transcript that harbors functional AU-rich elements (ARE) in the 3'UTR. A minimal 60-nt region, but not a mutant form, fused to reporter-3'UTR constructs was able to downregulate the reporter activity. The most predominant and alternatively polyadenylated mature transcript does not contain the ARE. HuR itself binds HuR mRNA, and upregulated the activity of reporter from constructs fused with ARE-isoform and the HuR ARE. Wild-type tristetraprolin (TTP), but not the zinc finger mutant TTP, competes for HuR binding and upregulation of HuR mRNA. The study shows that the HuR gene codes for several polyadenylation variants differentially regulated by AU-rich elements, and demonstrates an auto-regulatory role of HuR.


Assuntos
Regiões 3' não Traduzidas/química , Antígenos de Superfície/genética , Poliadenilação , Proteínas de Ligação a RNA/genética , Adenina/análise , Antígenos de Superfície/metabolismo , Linhagem Celular , Clonagem Molecular , Biologia Computacional , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Variação Genética , Homeostase , Humanos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Tristetraprolina/metabolismo , Uridina/análise
9.
BMC Mol Biol ; 10: 20, 2009 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-19267938

RESUMO

BACKGROUND: The majority of the promoters, their regulatory elements, and their variations in the human genome remain unknown. Reporter gene technology for transcriptional activity is a widely used tool for the study of promoter structure, gene regulation, and signaling pathways. Construction of transcriptional reporter vectors, including use of cis-acting sequences, requires cloning and time-demanding manipulations, particularly with introduced mutations. RESULTS: In this report, we describe a cloning-free strategy to generate transcriptionally-controllable linear reporter constructs. This approach was applied in common transcriptional models of inflammatory response and the interferon system. In addition, it was used to delineate minimal transcriptional activity of selected ribosomal protein promoters. The approach was tested for conversion of genes into TetO-inducible/repressible expression cassettes. CONCLUSION: The simple introduction and tuning of any transcriptional control in the linear DNA product renders promoter activation and regulated gene studies simple and versatile.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Regulação da Expressão Gênica , Genes Reporter/genética , Linhagem Celular , Clonagem Molecular , Humanos , Modelos Genéticos
10.
BMC Mol Biol ; 8: 28, 2007 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-17437629

RESUMO

BACKGROUND: KSRP is a AU-rich element (ARE) binding protein that causes decay of select sets of transcripts in different cell types. We have recently described that phosphatidylinositol 3-kinase/AKT (PI3K-AKT) activation induces stabilization and accumulation of the labile beta-catenin mRNA through an impairment of KSRP function. RESULTS: Aim of this study was to identify additional KSRP targets whose stability and steady-state levels are enhanced by PI3K-AKT activation. First, through microarray analyses of the AU-rich transcriptome in pituitary alphaT3-1 cells, we identified 34 ARE-containing transcripts upregulated in cells expressing a constitutively active form of AKT1. In parallel, by an affinity chromatography-based technique followed by microarray analyses, 12 mRNAs target of KSRP, additional to beta-catenin, were identified. Among them, seven mRNAs were upregulated in cells expressing activated AKT1. Both steady-state levels and stability of these new KSRP targets were consistently increased by either KSRP knock-down or PI3K-AKT activation. CONCLUSION: Our study identified a set of transcripts that are targets of KSRP and whose expression is increased by PI3K-AKT activation. These mRNAs encode RNA binding proteins, signaling molecules and a replication-independent histone. The increased expression of these gene products upon PI3K-AKT activation could play a role in the cellular events initiated by this signaling pathway.


Assuntos
Perfilação da Expressão Gênica , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Animais , Células Cultivadas , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Proteínas de Ligação a RNA/genética , Ratos , Proteínas Recombinantes/genética , Transdução de Sinais/fisiologia , Transativadores/genética , Transfecção , Regulação para Cima
11.
J Mol Biol ; 342(3): 833-46, 2004 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-15342240

RESUMO

Interferons (IFN) are multi-functional proteins that induce a large number of genes which mediate many biological processes including host defense, cell growth control, signaling, and metabolism. Bioinformatics analysis of the 3'-untranslated regions of IFN-stimulated genes (ISGs) showed that the AU-rich elements (ARE) exist in approximately 10% of the mRNA induced by IFN. The human epithelial cell lines, WISH and 293, and the human B cell lines, Daudi and RPMI 1788, were assessed for their response to type-I IFN. Due to their differential response to the anti-viral and anti-proliferative action of IFN-alpha, they were used as cellular models for genome wide ARE-gene expression. The anti-viral and anti-proliferative actions of IFN-alpha were substantially more potent against WISH and Daudi cells than 293 and RPMI 1788 cells, respectively. These results correlated with the Stat1-driven gene expression as assessed by monitoring the expression of Stat1-mediated IFN-inducible 6-16 mRNA. Interferons were able to induce a significant proportion of common and distinct ARE-genes, but the patterns of expression were different and dependent on the type of the cell, type of IFN, and status of the cellular sensitivity to IFN. Clustering algorithms generated two informative expressed gene clusters that were selectively associated with cellular sensitivity and resistance to the anti-viral and anti-proliferative action of IFN. Use of rationally designed microarray experiments in IFN biology yielded informative clusters that may provide candidate genes for diagnostic or for evaluation of therapeutic possibilities.


Assuntos
Resistência a Medicamentos/genética , Interferon-alfa/farmacologia , Família Multigênica , Antivirais/farmacologia , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Composição de Bases , Sequência de Bases , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Interferon alfa-2 , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas Recombinantes
12.
RNA ; 10(4): 747-53, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15037783

RESUMO

Study of early and transient response gene expression is important for understanding the mechanisms of response to growth stimuli and exogenous agents such as microbes, stress, and radiation. Many of the cytokines, proto-oncogenes, and other transiently expressed gene products are encoded by mRNAs that contain AU-rich elements (AREs) in their 3' untranslated regions (UTRs). In this article, we describe an approach to selectively synthesize ARE-containing cDNA (ARE-cDNA) using an innovative combination of culture treatment, thermostabilization of reverse transcriptase (RT) by the disaccharide trehalose, and use of optimized ARE-specific oligomers. The monocytic cell line, THP-1, was treated with cycloheximide and endotoxin to enrich for ARE-mediated gene expression followed by the RT procedure. Selection of ARE-cDNA with simultaneous suppression of abundant cDNA was made possible using the procedure as monitored by the preferential expression of IL-8, an ARE-cDNA molecule, over the abundant housekeeping cDNA, beta-actin. The use of trehalose dramatically reversed cDNA abundance, resulting in almost complete suppression of housekeeping cDNA. Finally, construction of specialized ARE-cDNA libraries confirmed the selectivity of ARE-cDNAs and the presence of rare genes. The ability to reverse the abundance of housekeeping and other highly expressed genes toward ARE genes facilitates the discovery and study of rare early response and transiently expressed genes.


Assuntos
Sequência Rica em At , DNA Complementar , RNA , Sequência Rica em At/fisiologia , Animais , DNA Complementar/metabolismo , Biblioteca Gênica , Humanos , Interleucina-8/genética , Modelos Biológicos , Dados de Sequência Molecular , Vírus da Leucemia Murina de Moloney/genética , Monócitos/metabolismo , RNA/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo
13.
J Biol Chem ; 278(22): 20124-32, 2003 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12582177

RESUMO

The transient control of diverse biological responses that occurs in response to varied forms of stress is often a highly regulated process. During the interferon (IFN) response, translational repression due to phosphorylation of eukaryotic initiation factor 2alpha, eIF2alpha, by the double-stranded RNA-dependent protein kinase, PKR, constitutes a means of inhibiting viral replication. Here we show that the transient nature of the IFN response against acute viral infections is regulated, at least in part, by RNase L. During the IFN antiviral response in RNase L-null cells, PKR mRNA stability was enhanced, PKR induction was increased, and the phosphorylated form of eIF2alpha appeared with extended kinetics compared with similarly treated wild type cells. An enhanced IFN response in RNase L-null cells was also demonstrated by monitoring inhibition of viral protein synthesis. Furthermore, ectopic expression of RNase L from a plasmid vector prevented the IFN induction of PKR. These results suggest a role for RNase L in the transient control of the IFN response and possibly of other cytokine and stress responses.


Assuntos
Endorribonucleases/metabolismo , Interferons/fisiologia , RNA de Cadeia Dupla/metabolismo , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular , Camundongos , Fosforilação , Transfecção , Proteínas Virais/biossíntese
14.
Genome Res ; 12(6): 985-95, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12045152

RESUMO

Messenger RNAs that have the stability determinants, adenylate uridylate-rich elements (AREs), in their 3' untranslated region (UTR) code for key products that regulate early and transient biological responses. We used a computational laboratory approach for amplification of large, including full-length, protein-coding regions for ARE genes. Statistical analysis of the initiation regions in the 5' UTR of ARE-mRNAs was performed. Accordingly, several 5' primers and a single universal 3' primer that targeted the initiation consensuses and ARE regions, respectively, were designed. Using optimized conditions, the primers were able to enrich and amplify large protein-coding regions for the ARE gene family. The selective amplification of ARE cDNAs was verified using specific polymerase chain reactions (PCRs) to known ARE mRNA molecules and monitoring the abundance of the non-ARE beta-actin signal. A mini-library from the amplified ARE products was constructed for further confirmation of ARE selection. Distinct ARE amplified cDNA pools were selectively generated by distinct 5' primers. The biological utility of the method was shown with differential display. The up-regulation of several ARE-mRNAs, including the full-length coding region of the small inducible cytokine A4 (SCYA4) gene, was shown in endotoxin-stimulated monocytic cells. The integrated computational and laboratory approach should lead to enhanced capability for discovery and expression analysis of early and transient response genes.


Assuntos
Adenina/metabolismo , Biologia Computacional/métodos , Sequência Consenso/genética , Técnicas de Amplificação de Ácido Nucleico , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Nucleico/genética , Uridina/metabolismo , Regiões 3' não Traduzidas/genética , Linhagem Celular , Clonagem Molecular/métodos , Primers do DNA/genética , Primers do DNA/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Biblioteca Gênica , Humanos , Monócitos/química , Sensibilidade e Especificidade , Análise de Sequência de RNA/métodos , Taq Polimerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...