Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm X ; 7: 100245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38633410

RESUMO

Infected wounds pose a significant challenge in healthcare, requiring innovative therapeutic strategies. Therefore, there is a critical need for innovative pharmaceutical materials to improve wound healing and combat bacterial growth. This study examined the efficacy of azithromycin-loaded silver nanoparticles (AZM-AgNPs) in treating infected wounds. AgNPs synthesized using a green method with Quinoa seed extract were loaded with AZM. Characterization techniques, including X-ray Powder Diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Uv-Vis analysis were utilized. The agar diffusion assay and determination of the MIC were used to assess the initial antibacterial impact of the formulations on both MRSA and E. coli. In addition, the antimicrobial, wound-healing effects and histological changes following treatment with the AZM-AgNPs were assessed using an infected rat model. The nanoparticles had size of 24.9 ± 15.2 nm for AgNPs and 34.7 ± 9.7 nm for AZM-AgNPs. The Langmuir model accurately characterized the adsorption of AZM onto the AgNP surface, indicating a maximum loading capacity of 162.73 mg/g. AZM-AgNPs exhibited superior antibacterial properties in vivo and in vitro compared to controls. Using the agar diffusion technique, AZM-AgNPs showed enhanced zones of inhibition against E. coli and MRSA, which was coupled with decreased MIC levels. In addition, in vivo studies showed that AZM-AgNP treated rats had the best outcome characterized by improved healing process, lower bacterial counts and superior epithelialization, compared to the control group. In conclusion, AZM-AgNPs can be synthesized using a green method with Quinoa seed with successful loading of azithromycin onto silver nanoparticles. In vitro and in vivo studies suggest the promising use of AZM-AgNPs as an effective therapeutic agent for infected wounds.

2.
Int J Mol Sci ; 24(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37834266

RESUMO

A novel derivative of ciprofloxacin (Cpx) was synthesized and characterized using various analytical techniques, including FT-IR spectroscopy, UV-Vis spectroscopy, TEM and SEM analysis, 1H NMR, 13C NMR, and HPLC analysis. The newly prepared Cpx derivative (Cpx-Drv) exhibited significantly enhanced antibacterial properties compared to Cpx itself. In particular, Cpx-Drv demonstrated a 51% increase in antibacterial activity against S. aureus and a 30% improvement against B. subtilis. It displayed potent inhibitory effects on topoisomerases II (DNA gyrase and topoisomerase IV) as potential molecular targets, with IC50 values of 6.754 and 1.913 µg/mL, respectively, in contrast to Cpx, which had IC50 values of 2.125 and 0.821 µg/mL, respectively. Docking studies further supported these findings, showing that Cpx-Drv exhibited stronger binding interactions with the gyrase enzyme (PDB ID: 2XCT) compared to the parent Cpx, with binding affinities of -10.3349 and -7.7506 kcal/mole, respectively.


Assuntos
Ciprofloxacina , Staphylococcus aureus , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Cromatografia Líquida de Alta Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Antibacterianos/química , DNA Girase , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química
3.
BMC Chem ; 17(1): 72, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438790

RESUMO

Cefoperazone (Cfz) is a member of the third generation of parenteral cephalosporin antibiotics. It is used on a wide scale in prescribed antibiotic drugs as anti-infection, especially for Gram-negative and also against Gram-positive microorganisms. The current study aimed to find a rapid RP-HPLC method of Cfz analysis with high linearity, repeatability, sensitivity, selectivity, and inexpensive. In our developed method, there is no need to use special chemical reagents, a high percentage of organic solvent, a high flow rate, further guard column. The chromatographic system comprises an ODS column (150 mm × 4.6 mm × 5 µm). The mobile phase was prepared by mixing KH2PO4 solution: acetonitrile (80:20) with a flow rate of 1.0 mL/min at detection wavelength 230 nm, at room temperature using injection volume 20 µL. The method manifested a satisfied linearity regression R2 (0.9993) with a good repeatability range (0.34-0.92%) with LOD and LOQ; 4.04 µg/mL and 12.24 µg/mL respectively. The method proved its efficiency via system suitability achievement in the robustness and ruggedness conduction according to the validation guidelines. The shorter analysis time makes the method very valuable in quality control to quantify the commercial Cfz in pharmaceutical preparations. This improved HPLC method has been successfully applied for Cfz analysis for Peracef and Peractam vials in our routine finished and stability studies testing laboratories. Additionally, the detection limit of Cfz has been tested in our quality control lab to detect the smallest amount of traces that may be present after the cleaning process of the production machines for cephalosporins preparations. In a precedent for the first time, we were able to use the current analysis method to determine the minimum inhibitory concentration (MIC) and minimum bacteriostatic concentration (MBC). The conventional broth micro-dilution tube method was used to determine MIC at 250 µg/mL and MBC at 125 µg/mL of Cfz against the standard strain of Burkholderia cepacia (B. cepacia) ATCC 25416 as Gram-negative bacteria in vitro.

4.
Sci Rep ; 13(1): 11548, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460790

RESUMO

Methylprednisolone sodium succinate (MPSS) is a parenteral water-soluble corticosteroid ester. It gives three peaks methylprednisolone (MP), 17-methylprednisolone hemisuccinate (17-MPHS), and methylprednisolone hemisuccinate (MPHS) that share in the assay determination as total MP. It is used on a wide scale in prescribed anti-inflammatory drugs as a common use. The current study aimed to find a rapid RP-HPLC method of MP and its derivatives analysis with high linearity, repeatability, sensitivity, selectivity, and inexpensive to use without the need for any special chemical reagents. The use of the current method achieved a satisfactory result to detect, determine and separate the MP, 17-MPHS, and MPHS in a short time. The chromatographic system consists of RP-HPLC using the BDS column (250 mm × 4.6 mm × 5 µm). The mobile phase was prepared by mixing the WFI: glacial acetic acid: acetonitrile in a volume ratio (63:2:35) at a flow rate of 2.0 mL/min with detection wavelength at 254 nm at room temperature and injection volume 20 µL. The method manifested a satisfied linearity regression R2 (0.9998-0.99999) with LOD 143.97 ng/mL and 4.49 µg/mL; and LOQ 436.27 ng/mL and 13.61 µg/mL for MP and MPHS respectively. The method proved its efficiency via system suitability achievement in the robustness and ruggedness conduction according to the validation guidelines. High sensitivity according to its LOD and LOQ. So, the current method could be considered in the pharmaceutical industry. The suggested method has been successfully implemented in the Egyptian local market for the quantitative assessment of the assay of the finished product.


Assuntos
Hemissuccinato de Metilprednisolona , Metilprednisolona , Cromatografia Líquida de Alta Pressão/métodos , Anti-Inflamatórios , Egito
5.
Sci Rep ; 13(1): 10294, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357256

RESUMO

Thiopental sodium (Tho) is an intravenous anesthetic. The current study aimed to find a rapid RP-HPLC method of Tho analysis with high linearity, repeatability, sensitivity, selectivity, and inexpensive. In our developed method, there is no need to use special chemical reagents, a high percentage of organic solvent, a high flow rate, or a further guard column. The chromatographic system consists of an ODS column (150 mm × 4.6 mm × 5 µm). The mobile phase was prepared by mixing KH2PO4 solution: methanol (40:60) with a flow rate of 1.2 mL/min at a detection wavelength of 230 nm, at room temperature using an injection volume of 10 µL. The method manifested a satisfied linearity regression R2 (0.9997) with a good repeatability precision range (0.16-0.47%) with LOD and LOQ; 14.4 µg/mL and 43.6 µg/mL respectively. Additionally, the method proved its efficiency via system suitability achievement in robustness and ruggedness, according to the validation guidelines. The shorter analysis time makes the method very valuable in quality control to quantify the commercial Tho in pharmaceutical preparations. This improved HPLC method has been successfully applied for Tho analysis for Thiopental UP Pharma 500 mg vials and Thiopental Eipico 1.0 g vials in our routine finished and stability studies testing laboratories. Additionally, the detection limit of Tho has been tested in our quality control lab to detect the smallest amount of traces that may be present after the cleaning process of the production machines for cephalosporins preparations. The method has shown positive results for Tho in low-level raw materials and pharmaceutical formulations.


Assuntos
Cefalosporinas , Tiopental , Cromatografia Líquida de Alta Pressão/métodos , Controle de Qualidade , Composição de Medicamentos
6.
Pharmaceutics ; 14(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36145592

RESUMO

High mortality and morbidity rates are related to hepatocellular carcinoma (HCC), which is the most prevalent type of liver cancer. A new vision for cancer treatment and cancer cell targeting has emerged with the application of nanotechnology, which reduces the systemic toxicity and adverse effects of chemotherapy medications while increasing their effectiveness. It was the goal of the proposed work to create and investigate an anticancer C@Fe@Cu nanocomposite (NC) loaded with Doxorubicin (DOX) for the treatment of HCC. Scanning and transmission electron microscopes (SEM and TEM) were used to examine the morphology of the produced NC. The formulation variables (DOX content, C@Fe@Cu NC weight, and stirring speed) were analyzed and optimized using Box-Behnken Design (BBD) and Response Surface Methodology (RSM). Additionally, X-ray diffraction patterns (XRD) and Fourier Transform Infrared (FTIR) were investigated. Doxorubicin and DOX- loaded C@Fe@Cu NC (DOX-C@Fe@Cu NC) were also assessed against HEPG2 cells for anticancer efficacy (Hepatic cancer cell line). The results revealed the formation of C@Fe@Cu NC with a mean size of 7.8 nm. A D-R model with a mean size of 24.1 nm best fits the adsorption behavior of DOX onto the C@Fe@Cu NC surface. DOX-C@Fe@Cu NC has also been demonstrated to have a considerably lower IC50 and higher cytotoxicity than DOX alone in an in vitro investigation. Therefore, DOX-C@Fe@Cu NC is a promising DOX delivery vehicle for the full recovery of HCC.

7.
Sci Rep ; 12(1): 11881, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831423

RESUMO

The present paper evaluates the photocatalytic degradation (PCD) performance of the biofabricated hematite nanoparticles (α-HNPs) for the degradation approach of the Cefotaxime (Cfm). The optimum pH of the solution to achieve the best PCD was found to be 10.5. The kinetics study for the PCD of the Cfm via α-HNPs has been investigated and the reaction was found to be fellow pseudo-first-order at R2 = 0.992. The mass loading impact of α-HNPs was investigated and estimated for the maximum degradation of Cfm 0.4 mg/mL. UV-Vis confirmed that α-HNPs had a direct transition bandgap at 3.78 eV at a maximum absorption wavelength of 362 nm with suspension stability for 7 days. The probable mechanism of the Cfm PCD via α-HNPs and the degradation pathway was conducted. The validation of the suspension stability of the α-HNPs (-68.6 ± 11.8 mV) was determined using the zeta potential investigation test. XRD investigation was conducted after Cfm PCD showing an average crystallite size of 27.0 nm. XRD, TEM, SEM, EDX, and FT-IR analyses have been conducted for the α-HNPs before and after Cfm PCD confirming the high efficiency for the reusability of the current biocatalyst α-HNPs for further use. TEM results of the particle sizes of α-HNPs were found at 19.2 ± 4.4 and 20.6 ± 7.4 nm respectively before and after Cfm PCD. The efficiency of the Cfm PCD was found to be 99.1% after 6 h. High potent as an antibacterial agent of α-HNPs was investigated either α-HNPs alone or after its PCD activity against Cfm. The antibacterial activity revealed high sensitivity, especially toward Gram-positive species indicating its promising ability against pathogenic issues. Interestingly, Cfm@α-HNPs showed superior anti-proliferative activity as tested by MTT assay and were able to induce apoptosis in MCF7 and HepG2 cell lines using the flow cytometry technique at 20.7% and 17% respectively. Also, The IC50 of hydrogen peroxide scavenging was estimated and it was manifested that 635.8 and 665.6 µg/mL of α-HNPs before and after the PCD process of Cfm respectively.


Assuntos
Antibacterianos , Cefotaxima , Antibacterianos/farmacologia , Cefotaxima/farmacologia , Fenômenos Químicos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Sci Rep ; 12(1): 10970, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768496

RESUMO

Pharmaceutical wastewater contamination via azithromycin antibiotic and the continuous emergence of some strains of bacteria, cancer, and the Covid-19 virus. Azithromycin wastewater treatment using the biosynthesized Hematite nanoparticles (α-HNPs) and the biocompatible activities of the resulted nanosystem were reported. Biofabrication of α-HNPs using Echinacea purpurea liquid extract as a previously reported approach was implemented. An evaluation of the adsorption technique via the biofabricated α-HNPs for the removal of the Azr drug contaminant from the pharmaceutical wastewater was conducted. Adsorption isotherm, kinetics, and thermodynamic parameters of the Azr on the α-HNPs surface have been investigated as a batch mode of equilibrium experiments. Antibacterial, anticancer, and antiviral activities were conducted as Azr@α-HNPs. The optimum conditions for the adsorption study were conducted as solution pH = 10, 150 mg dose of α-HNPs, and Azr concentration 400 mg/L at 293 K. The most fitted isothermal model was described according to the Langmuir model at adsorption capacity 114.05 mg/g in a pseudo-second-order kinetic mechanistic at R2 0.9999. Thermodynamic study manifested that the adsorption behavior is a spontaneous endothermic chemisorption process. Subsequently, studying the biocompatible applications of the Azr@α-HNPs. Azr@α-HNPs antibacterial activity revealed a synergistic effect in the case of Gram-positive more than Gram-negative bacteria. IC50 of Azr@α-HNPs cytotoxicity against MCF7, HepG2, and HCT116 cell lines was investigated and it was found to be 78.1, 81.7, and 93.4 µg/mL respectively. As the first investigation of the antiviral use of Azr@α-HNPs against SARS-CoV-2, it was achieved a safety therapeutic index equal to 25.4 revealing a promising antiviral activity. An admirable impact of the use of the biosynthesized α-HNPs and its removal nanosystem product Azr@α-HNPs was manifested and it may be used soon as a platform of the drug delivery nanosystem for the biomedical applications.


Assuntos
Tratamento Farmacológico da COVID-19 , Poluentes Químicos da Água , Adsorção , Antibacterianos/farmacologia , Antivirais , Azitromicina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas Magnéticas de Óxido de Ferro , Preparações Farmacêuticas , SARS-CoV-2 , Termodinâmica , Águas Residuárias , Poluentes Químicos da Água/análise
9.
Pharmaceutics ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35057019

RESUMO

Skin is the largest mechanical barrier against invading pathogens. Following skin injury, the healing process immediately starts to regenerate the damaged tissues and to avoid complications that usually include colonization by pathogenic bacteria, leading to fever and sepsis, which further impairs and complicates the healing process. So, there is an urgent need to develop a novel pharmaceutical material that promotes the healing of infected wounds. The present work aimed to prepare and evaluate the efficacy of novel azithromycin-loaded zinc oxide nanoparticles (AZM-ZnONPs) in the treatment of infected wounds. The Box-Behnken design and response surface methodology were used to evaluate loading efficiency and release characteristics of the prepared NPs. The minimum inhibitory concentration (MIC) of the formulations was determined against Staphylococcus aureus and Escherichia coli. Moreover, the anti-bacterial and wound-healing activities of the AZM-loaded ZnONPs impregnated into hydroxyl propyl methylcellulose (HPMC) gel were evaluated in an excisional wound model in rats. The prepared ZnONPs were loaded with AZM by adsorption. The prepared ZnONPs were fully characterized by XRD, EDAX, SEM, TEM, and FT-IR analysis. Particle size distribution for the prepared ZnO and AZM-ZnONPs were determined and found to be 34 and 39 nm, respectively. The mechanism by which AZM adsorbed on the surface of ZnONPs was the best fit by the Freundlich model with a maximum load capacity of 160.4 mg/g. Anti-microbial studies showed that AZM-ZnONPs were more effective than other controls. Using an experimental infection model in rats, AZM-ZnONPs impregnated into HPMC gel enhanced bacterial clearance and epidermal regeneration, and stimulated tissue formation. In conclusion, AZM -loaded ZnONPs are a promising platform for effective and rapid healing of infected wounds.

10.
Pharmaceutics ; 13(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562032

RESUMO

Colorectal cancer (CRC) is the third highest major cause of morbidity and mortality worldwide. Hence, many strategies and approaches have been widely developed for cancer treatment. This work prepared and evaluated the antitumor activity of 5-Fluorouracil (5-Fu) loaded chromium nanoparticles (5-FuCrNPs). The green biosynthesis approach using Harpullia (H) pendula aqueous extract was used for CrNPs preparation, which was further loaded with 5-Fu. The prepared NPs were characterized for morphology using scanning and transmission electron microscopes (SEM and TEM). The results revealed the formation of uniform, mono-dispersive, and highly stable CrNPs with a mean size of 23 nm. Encapsulation of 5-Fu over CrNPs, with a higher drug loading efficiency, was successful with a mean size of 29 nm being produced. In addition, Fourier transform infrared (FTIR) and X-ray diffraction pattern (XRD) were also used for the investigation. The drug 5-Fu was adsorbed on the surface of biosynthesized CrNPs in order to overcome its clinical resistance and increase its activity against CRC cells. Box-Behnken Design (BBD) and response surface methodology (RSM) were used to characterize and optimize the formulation factors (5-Fu concentration, CrNP weight, and temperature). Furthermore, the antitumor activity of the prepared 5-FuCrNPs was tested against CRC cells (CACO-2). This in vitro antitumor study demonstrated that 5-Fu-loaded CrNPs markedly decreased the IC50 of 5-Fu and exerted more cytotoxicity at nearly all concentrations than 5-Fu alone. In conclusion, 5-FuCrNPs is a promising drug delivery system for the effective treatment of CRC.

11.
Heliyon ; 7(1): e05806, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33490660

RESUMO

The aim of the current work is the introduction of a quick and simple literature survey about the bio-fabrication of the Alpha Hematite nanoparticles (α-Fe2O3) using the plant extracts green method. The survey manifested the utilities of the environmentally friendly biosynthesis methods via extracting different plant species, some of its important physicochemical properties, various instrumental analysis characterization tools, and potential applications.

12.
AAPS PharmSciTech ; 21(5): 175, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32556636

RESUMO

Wound-healing is a very complex and evolutionary process that involves a great variety of dynamic steps. Although different pharmaceutical agents have been developed to hasten the wound-healing process, the existing agents are still far from optimal. The present work aimed to prepare and evaluate the wound-healing efficacy of phenytoin-loaded copper nanoparticles (PHT-loaded CuNPs). CuNPs were biosynthesized using licorice aqueous extract. The prepared CuNPs were loaded with PHT by adsorption, characterized, and evaluated for wound-healing efficiency. Results showed that both plain and PHT-loaded CuNPs were monodisperse and exhibited a cubic and hexagonal morphology. The mechanism by which PHT was adsorbed on the surface of CuNPs was best fit by the Langmuir model with a maximum loaded monolayer capacity of 181 mg/g. The kinetic study revealed that the adsorption reaction followed the pseudo-second order while the thermodynamic parameters indicated that the adsorption process was physical in nature and endothermic, and occurred spontaneously. Moreover, the in vivo wound-healing activity of PHT-loaded CuNP impregnated hydroxypropylmethyl cellulose (HPMC) gel was carried out using an excisional wound model in rats. Data showed that PHT-loaded CuNPs accelerated epidermal regeneration and stimulated granulation and tissue formation in treated rats compared to controls. Additionally, quantitative real-time polymerase chain reaction (RT-PCR) analysis showed that lesions treated with PHT-loaded CuNPs were associated with a marked increase in the expression of dermal procollagen type I and a decrease in the expression of the inflammatory JAK3 compared to control samples. In conclusion, PHT-loaded CuNPs are a promising platform for effective and rapid wound-healing.


Assuntos
Cobre/farmacologia , Nanopartículas , Fenitoína/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Colágeno Tipo I/metabolismo , Janus Quinase 3/metabolismo , Masculino , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/patologia
13.
Heliyon ; 5(8): e02339, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31485528

RESUMO

The release of Non-Steroidal Anti-Inflammatory drugs (NSAIDs) such as Ibuprofen (Ibu), Naproxen (Nab) and Diclofenac (Dic) to the aquatic system cause serious environmental problems. In this study, green-synthesized copper nanoparticles (Cu NPs) have been used as nano-adsorbent for the removal of Ibu, Nab, and Dic from wastewater samples. Formation of Cu NPs was confirmed by different analytical techniques. The adsorption parameters such as temperature, pH, adsorbate concentration, adsorbent dose and contact time were studied. The best removal results were obtained at these conditions: temperature 298 K, pH = 4.5, 10.0 mg Cu NPs, 60 min. At these conditions, the removal percentage of Ibu, Nap, and Dic were found to be 74.4, 86.9 and 91.4% respectively. The maximum monolayer adsorption capacities were calculated as 36.0, 33.9 and 33.9 mg/g for Dic, Nap, and Ibu respectively. The kinetic studies conducted that the sorption process obeyed the second order kinetic model, while the thermodynamic results revealed that the adsorption process was spontaneous, endothermic (+23.8, +40.8 and +38.3 kJ/mol for Ibu, Nap and Dic respectively). The results revealed that green-synthesized copper nano-adsorbent may be used for the removal of the anti-inflammatory drugs from real wastewater efficiently.

14.
Heliyon ; 4(12): e01077, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30603710

RESUMO

A cost-effective method for the biosynthesis of copper nanoparticles (Cu-NPLs) using Tilia extract under optimum conditions has been presented. The use of Tilia extracts for the synthesis of Cu-NPLs has been investigated for the first time. The Cu-NPLs are stable due to in situ bio-capping by the Tilia extract residues. Formation of metallic Cu was revealed by UV-vis and XRD analyses. UV-vis of Cu-NPLs showed an SPR characteristic peak at 563 nm (energy bandgap = 2.1 eV). Morphology and size of the as-prepared Cu-NPLs were determined using SEM and TEM studies. TEM observations show that the produced Cu-NPLs are hemispherical in shape with different diameters in the range 4.7-17.4 nm. The electrical conductivity of the Cu-NPLs was determined as 1.04 × 10-6 S cm-1 (at T = 120 K). The antimicrobial studies exhibited relatively high activity against pathogenic bacteria like Gram-positive & Gram-negative bacteria. Anticancer studies demonstrated the in vitro cytotoxicity value of Cu-NPLs against tested human colon cancer Caco-2 cells, human hepatic cancer HepG2 cells and human breast cancer Mcf-7 cells. To conclude, Cu-NPLs are promising in electronic devices and they possess a potential anticancer application for some human cancer therapy as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...