Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1392688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841098

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as critical players in brain development and disease. These non-coding transcripts, which once considered as "transcriptional junk," are now known for their regulatory roles in gene expression. In brain development, lncRNAs participate in many processes, including neurogenesis, neuronal differentiation, and synaptogenesis. They employ their effect through a wide variety of transcriptional and post-transcriptional regulatory mechanisms through interactions with chromatin modifiers, transcription factors, and other regulatory molecules. Dysregulation of lncRNAs has been associated with certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders. Altered expression and function of specific lncRNAs have been implicated with disrupted neuronal connectivity, impaired synaptic plasticity, and aberrant gene expression pattern, highlighting the functional importance of this subclass of brain-enriched RNAs. Moreover, lncRNAs have been identified as potential biomarkers and therapeutic targets for neurological diseases. Here, we give a comprehensive review of the existing knowledge of lncRNAs. Our aim is to provide a better understanding of the diversity of lncRNA structure and functions in brain development and disease. This holds promise for unravelling the complexity of neurodevelopmental and neurodegenerative disorders, paving the way for the development of novel biomarkers and therapeutic targets for improved diagnosis and treatment.

2.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430176

RESUMO

Cancer immunotherapies have changed the landscape of cancer management and improved the standard treatment protocols used in multiple tumors. This has led to significant improvements in progression-free survival and overall survival rates. In this review article, we provide an insight into the major immunotherapeutic methods that are currently under investigation for colorectal cancer (CRC) and their clinical implementations. We emphasize therapies that are based on monoclonal antibodies (mAbs) and adoptive cell therapy, their mechanisms of action, their advantages, and their potential in combination therapy. We also highlight the clinical trials that have demonstrated both the therapeutic efficacy and the toxicities associated with each method. In addition, we summarize emerging targets that are now being evaluated as potential interventions for CRC. Finally, we discuss current challenges and future direction for the cancer immunotherapy field.


Assuntos
Antineoplásicos Imunológicos , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Imunoterapia/métodos , Anticorpos Monoclonais , Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia Adotiva
3.
Exp Ther Med ; 23(6): 412, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35601066

RESUMO

In adult tissue, the paired box 2 (PAX2) protein is expressed in healthy oviductal, but not normal ovarian surface epithelial cells. PAX2 is expressed in a subset of cases of serous ovarian carcinoma; however, the role of PAX2 in the initiation and progression of ovarian cancer remains unknown. The aim of the present study was to determine the biological effects of PAX2 expression in normal and cancerous epithelial cells. By culturing the normal and cancerous ovarian cells that express PAX2 in 3D culture and staining the cells with vasculogenic mimicry markers such as CD31 and PAS, it was shown that PAX2 overexpression in both normal and cancerous ovarian epithelial cells induced formation of vascular-like structures both in vitro and in vivo. These results indicated a potential role of PAX2 in ovarian cancer progression by increasing the presence of vascular-like structures to promote the supply of nutrients to tumor cells and facilitate cancer cell proliferation and invasion.

4.
Stem Cell Investig ; 6: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119147

RESUMO

In an attempt to conceptualize the process of cancer formation, Hanahan and Weinberg [2000] have outlined six universal characteristics of tumorigenesis, and labelled them as the "hallmarks of cancer". These hallmarks include; unlimited proliferation, evading growth suppressors, resisting cell death, replicative immortality, inducing angiogenesis, initiating invasion and metastasis. Cancer cell signalling is crucial for initiating and controlling cellular pathways that are involved in these hallmarks. The intricate network of communication between cancer cells and other cancer or non-cancer cells is still being investigated, and is yet to be fully understood. Initially it was proposed that the main form of communication between cells within the tumour microenvironment are soluble growth factors, and gap junctions. Then, researchers reported another form of cell-to-cell communication, through the release of spherical particles called exosomes. It is believed that these exosomes enable communication through the transfer of active components from the releasing cell, and off-loading it into the recipient cell. As researchers continue to examine the development of the cancer hallmarks and the pathways involved, it became evident that cancer cell-derived exosomes play a major role in almost all of them. This review will examine the role played by cancer cell-derived exosomes in development of cancer.

5.
Biomed Rep ; 8(3): 275-282, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29564125

RESUMO

The 'Therapeutics discovery: From bench to first in-human trials' conference, held at the King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), Kingdom of Saudi Arabia (KSA) from October 10-12, 2017, provided a unique opportunity for experts worldwide to discuss advances in drug discovery and development, focusing on phase I clinical trials. It was the first event of its kind to be hosted at the new research center, which was constructed to boost drug discovery and development in the KSA in collaboration with institutions, such as the Academic Drug Discovery Consortium in the United States of America (USA), Structural Genomics Consortium of the University of Oxford in the United Kingdom (UK), and Institute of Materia Medica of the Chinese Academy of Medical Sciences in China. The program was divided into two parts. A pre-symposium day took place on October 10, during which courses were conducted on clinical trials, preclinical drug discovery, molecular biology and nanofiber research. The attendees had the opportunity for one-to-one meetings with international experts to exchange information and foster collaborations. In the second part of the conference, which took place on October 11 and 12, the clinical trials pipeline, design and recruitment of volunteers, and economic impact of clinical trials were discussed. The Saudi Food and Drug Administration presented the regulations governing clinical trials in the KSA. The process of preclinical drug discovery from small molecules, cellular and immunologic therapies, and approaches to identifying new targets were also presented. The recommendation of the conference was that researchers in the KSA must invest more fund, talents and infrastructure to lead the region in phase I clinical trials and preclinical drug discovery. Diseases affecting the local population, such as Middle East Respiratory Syndrome and resistant bacterial infections, represent the optimal starting point.

6.
Oncotarget ; 8(44): 76881-76897, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100356

RESUMO

Recent studies have provided evidence that the secretory cells of the fallopian tube (oviduct) are a probable origin for high-grade serous ovarian carcinoma. In addition to secretory cells, the fallopian tube epithelium consists of ciliated cells and CD44+ undifferentiated stem-like cells. Loss of PAX2 expression is recognized as an early event in epithelial transformation, but the specific role of PAX2 in this transition is unknown. The aim of this study was to define the role of PAX2 in oviductal epithelial (OVE) cells and its response to transforming growth factor ß1 (TGFß), characterizing specifically its potential involvement in regulating stem cell-like behaviors that may contribute to formation of cancer-initiating cells. Treatment of primary cultures of mouse OVE cells with TGFß induced an epithelial-mesenchymal transition (EMT) associated with decreased expression of PAX2 and an increase in the fraction of cells expressing CD44. PAX2 knockdown in OVE cells and overexpression in ovarian epithelial cells confirmed that PAX2 inhibits stem cell characteristics and regulates the degree of epithelial differentiation of OVE cells. These results suggest that loss of PAX2, as occurs in serous tubal intraepithelial carcinomas, may shift secretory cells to a more mesenchymal phenotype associated with stem-like features.

7.
Int J Mol Sci ; 17(9)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27618026

RESUMO

Multiple myeloma (MM) is a disorder of terminally differentiated plasma cells characterized by clonal expansion in the bone marrow (BM). It is the second-most common hematologic malignancy. Despite significant advances in therapeutic strategies, MM remains a predominantly incurable disease emphasizing the need for the development of new treatment regimens. Immunotherapy is a promising treatment modality to circumvent challenges in the management of MM. Many novel immunotherapy strategies, such as adoptive cell therapy and monoclonal antibodies, are currently under investigation in clinical trials, with some already demonstrating a positive impact on patient survival. In this review, we will summarize the current standards of care and discuss major new approaches in immunotherapy for MM.


Assuntos
Imunoterapia Adotiva/métodos , Mieloma Múltiplo/terapia , Animais , Anticorpos Monoclonais/uso terapêutico , Humanos , Mieloma Múltiplo/imunologia
8.
Cancer Prev Res (Phila) ; 8(12): 1163-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26373819

RESUMO

PAX2 is an essential transcription factor for development. Aberrant PAX2 expression in adult tissues is associated with carcinogenesis and experimental evidence shows that PAX2 generally exhibits oncogenic properties. Although PAX2 is not expressed in normal ovaries, it is highly expressed in low malignant potential and low-grade epithelial ovarian tumors, suggesting that PAX2 induction in ovarian surface epithelium (OSE) may contribute to transformation. Herein, we provide evidence that expression of PAX2 in normal murine OSE cells (mOSE) enhances their proliferation and survival and, with loss of p53, induces tumorigenicity. PAX2 expression in murine ovarian cancer cells enhanced or inhibited tumorigenicity, depending on the model system. In RM cells (mOSE transformed by K-RAS and c-MYC), PAX2 expression inhibited p53 and induced pERK1/2 and COX2, resulting in enhanced angiogenesis and decreased apoptosis of tumors arising from these cells. However, in a murine model of high-grade serous ovarian cancer (STOSE), PAX2 expression improved animal survival by reducing proliferation and metastasis, which correlated with increased Htra1 and decreased COX2. Thus, PAX2 may not be a classical oncogene or tumor suppressor but instead can act in either role by differential regulation of COX2 and/or HTRA1.


Assuntos
Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Fator de Transcrição PAX2/metabolismo , Animais , Western Blotting , Carcinoma Epitelial do Ovário , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Imuno-Histoquímica , Camundongos , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , RNA Interferente Pequeno , Transcriptoma , Transfecção
9.
Front Oncol ; 4: 53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672774

RESUMO

Improving screening and treatment options for patients with epithelial ovarian cancer has been a major challenge in cancer research. Development of novel diagnostic and therapeutic approaches, particularly for the most common subtype, high-grade serous ovarian cancer (HGSC), has been hampered by controversies over the origin of the disease and a lack of spontaneous HGSC models to resolve this controversy. Over long-term culture in our laboratory, an ovarian surface epithelial (OSE) cell line spontaneously transformed OSE (STOSE). The objective of this study was to determine if the STOSE cell line is a good model of HGSC. STOSE cells grow faster than early passage parental M0505 cells with a doubling time of 13 and 48 h, respectively. STOSE cells form colonies in soft agar, an activity for which M0505 cells have negligible capacity. Microarray analysis identified 1755 down-regulated genes and 1203 up-regulated genes in STOSE compared to M0505 cells, many associated with aberrant Wnt/ß-catenin and Nf-κB signaling. Upregulation of Ccnd1 and loss of Cdkn2a in STOSE tumors is consistent with changes identified in human ovarian cancers by The Cancer Genome Atlas. Intraperitoneal injection of STOSE cells into severe combined immunodeficient and syngeneic FVB/N mice produced cytokeratin+, WT1+, inhibin-, and PAX8+ tumors, a histotype resembling human HGSC. Based on evidence that a SCA1+ stem cell-like population exists in M0505 cells, we examined a subpopulation of SCA1+ cells that is present in STOSE cells. Compared to SCA1- cells, SCA1+ STOSE cells have increased colony-forming capacity and form palpable tumors 8 days faster after intrabursal injection into FVB/N mice. This study has identified the STOSE cells as the first spontaneous murine model of HGSC and provides evidence for the OSE as a possible origin of HGSC. Furthermore, this model provides a novel opportunity to study how normal stem-like OSE cells may transform into tumor-initiating cells.

10.
Breast Cancer Res Treat ; 128(1): 97-107, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20680677

RESUMO

We have investigated here the anti-breast cancer properties of two novel curcumin analogues, EAC and PAC. Apoptosis was assessed by the annexin V/propidium iodide (PI) assay on different breast cancer and normal cells. Immunoblotting analysis determined the effects of these agents on different apoptotic and oncogenic proteins. Furthermore, flow cytometry and Elispot were utilised to investigate the effects on the cell cycle and the production of cytokines, respectively. Breast cancer tumour xenografts were developed in nude mice. Finally, (18)F-radiolabeled PAC and curcumin were produced to study their bioavailability and tissue biodistribution in mice. PAC is five times more efficient than curcumin and EAC in inducing apoptosis, mainly via the internal mitochondrial route. This effect was 10-fold higher against ER-negative as compared to ER-positive cells, and ectopic expression of ERα rendered ER-negative breast cancer cells more resistant to PAC. In addition, PAC delayed the cell cycle at G2/M phase with a stronger effect on ER-negative cells. Moreover, PAC exhibited strong capacity as an immuno-inducer through reducing the secretion of the two major Th2 cytokines IL-4 and IL-10. Importantly, PAC significantly reduced tumour size, and triggered apoptosis in vivo. Furthermore, PAC inhibited survivin, NF-kB and its downstream effectors cyclin D1 and Bcl-2, and strongly up-regulated p21(WAF1) both in vitro and in tumours. Besides, PAC exhibited higher stability in blood and greater biodistribution and bioavailability than curcumin in mice. These results indicate that PAC could constitute a powerful, yet not toxic, new chemotherapeutic agent against ER-negative breast tumours.


Assuntos
Antineoplásicos/farmacologia , Compostos de Benzilideno/farmacologia , Piperidonas/farmacologia , Receptores de Estrogênio/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Compostos de Benzilideno/química , Compostos de Benzilideno/farmacocinética , Química Encefálica , Neoplasias da Mama , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Fase G2/efeitos dos fármacos , Genes Neoplásicos , Humanos , Interferon gama/metabolismo , Interleucina-10/antagonistas & inibidores , Interleucina-4/antagonistas & inibidores , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Miocárdio/metabolismo , Piperidonas/química , Piperidonas/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...