Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(47): 104246-104257, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37702869

RESUMO

In the present study, the fertilization potential of biosolids (sewage sludge; SS) for the cultivation of Aloe vera plants was investigated using block design. Pot experiments were conducted in this study using 50, 100, 150, and 200 g/kg of SS. Results showed that SS-fertilized soils significantly (p < 0.05) affected the proximate, biochemical, and heavy metal parameters of A. vera plants. In particular, the T4 treatment gave the best results with maximum plant height 62.21 ± 0.10 cm, number of leaves per plant 18.00 ± 4.00, shoot-to-root ratio 6:1, fresh weight 1972.10 ± 0.07 g per plant, dry weight 175.49 ± 0.15 g per plant, total chlorophyll content (TCC) 0.41 ± 0.02 mg/g fwt., carotenoids 0.25 ± 0.04 mg/g, total flavonoids 7.55 ± 0.05 mg/g, total tannins 3.87 ± 0.06 µg/g, ascorbic acid 532.14 ± 0.10 µg/g, superoxide dismutase (SOD) 46.28 ± 0.19 µg/g, catalase (CAT) 119.23 ± 0.17 µg/g, salicylic acid 3.05 ± 0.12 mg/ml and anthraquinones 0.45 ± 0.04 mg/ml, respectively. The proximate plant characteristics were 96.25 ± 2.71% moisture content, crude protein 0.93 ± 0.05%, crude fiber 5.78 ± 0.44%, crude lipid 3.25 ± 0.02%, lignin 10.74 ± 0.30%, cellulose 13.56 ± 1.06%, hemicellulose 7.24 ± 0.14%, ash 8.75 ± 0.03%, and carbohydrate contents 52.18 ± 1.10% in comparison with control treatment. The bioaccumulation factor showed that heavy metal accumulation was in the order of Cd < Ni < Cu < Pb < Cr < Zn < Fe. The prediction models developed on the basis of soil properties showed good fitness results for the prediction of heavy metal uptake by A. vera plants. The study presented a sustainable approach for managing SS in an eco-friendly way while producing good-quality A. vera plants.


Assuntos
Aloe , Metais Pesados , Poluentes do Solo , Solo/química , Biossólidos , Poluentes do Solo/análise , Metais Pesados/análise , Esgotos/química , Nutrientes
2.
Chemosphere ; 334: 138638, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37100254

RESUMO

The synthesis of metal nanoparticles using green chemistry methods has gained significant attention in the field of landscape enhancement. Researchers have paid close attention to the development of very effective green chemistry approaches for the production of metal nanoparticles (NPs). The primary goal is to create an environmentally sustainable technique for generating NPs. At the nanoscale, ferro- and ferrimagnetic minerals such as magnetite exhibit superparamagnetic properties (Fe3O4). Magnetic nanoparticles (NPs) have received increased interest in nanoscience and nanotechnology due to their physiochemical properties, small particle size (1-100 nm), and low toxicity. Biological resources such as bacteria, algae, fungus, and plants have been used to manufacture affordable, energy-efficient, non-toxic, and ecologically acceptable metallic NPs. Despite the growing demand for Fe3O4 nanoparticles in a variety of applications, typical chemical production processes can produce hazardous byproducts and trash, resulting in significant environmental implications. The purpose of this study is to look at the ability of Allium sativum, a member of the Alliaceae family recognized for its culinary and medicinal benefits, to synthesize Fe3O4 NPs. Extracts of Allium sativum seeds and cloves include reducing sugars like glucose, which may be used as decreasing factors in the production of Fe3O4 NPs to reduce the requirement for hazardous chemicals and increase sustainability. The analytic procedures were carried out utilizing machine learning as support vector regression (SVR). Furthermore, because Allium sativum is widely accessible and biocompatible, it is a safe and cost-effective material for the manufacture of Fe3O4 NPs. Using the regression indices metrics of root mean square error (RMSE) and coefficient of determination (R2), the X-ray diffraction (XRD) study revealed the lighter, smoother spherical forms of NPs in the presence of aqueous garlic extract and 70.223 nm in its absence. The antifungal activity of Fe3O4 NPs against Candida albicans was investigated using a disc diffusion technique but exhibited no impact at doses of 200, 400, and 600 ppm. This characterization of the nanoparticles helps in understanding their physical properties and provides insights into their potential applications in landscape enhancement.


Assuntos
Alho , Nanopartículas Metálicas , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Óxido Ferroso-Férrico , Antioxidantes/química , Antifúngicos , Química Verde/métodos , Extratos Vegetais/química
3.
Environ Res ; 224: 115426, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36781010

RESUMO

One of the major health issues facing people worldwide is liver fibrosis. Liver fibrosis may be brought on by long-term exposure to harmful substances, medicines, and microorganisms. The development of liver fibrosis in children was particularly worrying due to their longer life-span, which was possibly related to a great risk of developing long-term complications. Marine algae species have provided a biological variety in the research phase of novel approaches to the treatment of numerous ailments. Marine macroalgae have recently been the subject of research due to their rich bioactive chemical composition and potential for the production of various nutraceuticals. Macroalgae are potentially excellent sources of bioactive substances with particular and distinct biological activity when compared to their terrestrial equivalents. Macroalgae in diverse marine cases offer a few biologically active metabolites, comprising sterols, polyunsaturated fatty acids, carotenoids, oligosaccharides, polysaccharides, proteins, polyphenols, vitamins, and minerals. Accordingly, there is great interest in their high potential for supporting immunomodulatory, antimicrobial, antidiabetic, antitumoral, anti-inflammatory, antiangiogenic, and neuroprotective properties. Using an experimental model, the current research intends to collect data on the therapeutic value of macroalgae nanoparticles for fatty liver disease. The researchers' goal of predicting illnesses from the extensive medical datasets is quite difficult. The purpose of this research is to assess the protective effects of a seaweed, Padina pavonia (PP), on liver fibrosis caused by carbon tetrachloride (CCl4). This research presents two models of logistic regression (LR) and support vector machines (SVM) for predicting the likelihood of liver disease incidence. The performance of the model was evaluated using a dataset. PP macro-algae considerably reduce the high blood concentrations of aminotransferases, alkaline phosphatases, and lactate dehydrogenases, as well as causing a considerable (p < 0.05) decrease in serum bilirubin levels. In addition to improving kidney function (urea and creatinine), algal extracts enhance fat metabolism (triglycerides and cholesterol). With an accuracy rate of 70.2%, a sensitivity of 92.3%, a specificity of 74.7%, a type I error of 9.1%, and a type II error of 21.0%, the predictive model has demonstrated excellent performance. The model validated laboratory tests' ability to predict illness (age; direct bilirubin (DB), total proteins (TP), and albumin (ALB). These classifier methods are compared on the basis of their execution time and classification accuracy.


Assuntos
Alga Marinha , Criança , Humanos , Alga Marinha/química , Alga Marinha/metabolismo , Máquina de Vetores de Suporte , Modelos Logísticos , Cirrose Hepática , Bilirrubina/metabolismo
4.
J Fungi (Basel) ; 8(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35628708

RESUMO

This study presents a spatial assessment of eight potentially toxic elements (PTE: Cd, Cr, Cu, Fe, Pb, Ni, Mn, and Zn) in white button (Agaricus bisporus J.E. Lange) mushroom samples collected from the local vegetable markets of Uttarakhand State, India. Fresh A. bisporus samples were collected from thirteen districts and fifteen sampling locations (M1-M15) and analyzed for the concentration of these PTE using atomic absorption spectroscopy (AAS). The results revealed that A. bisporus contained all eight selected PTE in all sampling locations. Based on the inverse distance weighted (IDW) interpolation, principal component (PC), and hierarchical cluster (HC) analyses, the areas with a plane geographical distribution showed the highest PTE concentrations in the A. bisporus samples as compared to those in hilly areas. Overall, the decreasing order of PTE concentration in A. bisporus was recognized as Fe > Zn > Mn > Cr > Cu > Ni > Cd > Pb. The Kruskal−Wallis ANOVA tests displayed a highly significant (p < 0.05) difference among the sampling locations. However, the concentration of PTE was below permissible limits, indicating no potential hazard in consuming the A. bisporus. Similarly, the health risk assessment studies using the target hazard quotient (THQ) also showed no significant health risk associated with the consumption of A. bisporus being sold in the local mushroom markets of Uttarakhand, India. This study is the first report on state-level monitoring of PTE in A. bisporus mushrooms, which provides crucial information regarding the monitoring and occurrence of potentially toxic metallic elements.

5.
Plants (Basel) ; 11(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35448800

RESUMO

Endophytic Aspergillus species represent an inexhaustible source for many medicinally important secondary metabolites. The current study isolated the endophytic Aspergillus niger (OL519514) fungus from Opuntia ficus-indica fruit peels. The antibacterial activities were reported for both Aspergillus species and Opuntia ficus-indica fruit peel extract. Extraction of the endophytic fungal metabolites using ethyl acetate and fractionation was performed, yielding dihydroauroglaucin (C1), isotetrahydroauroglaucin (C2), and cristatumin B (C3). Resistant bacterial strains were used to investigate the efficiency of the total fungal ethyl acetate extract (FEA) and the isolated compounds. FEA showed promising wide spectrum activity. (C3) showed excellent activity against selected Gram-negative resistant bacteria; However, (C2) exhibited tremendous activity against the tested Gram-positive resistant strains; conversely, (C1) possessed the lowest antibacterial activity compared to the two other compounds. An in silico virtual molecular docking demonstrated that cristatumin B was the most active antimicrobial compound against the selected protein targets. In conclusion, the active metabolites newly isolated from the endophytic fungus Aspergillus niger (OL519514) and present in plants' waste can be a promising antimicrobial agent against multidrug-resistant bacteria.

6.
ACS Omega ; 6(18): 12318-12330, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34056384

RESUMO

Two types of NiO-based composites (NiO@diatomite and Ni/NiO@diatomite) were synthesized as modified products of enhanced catalytic performances during the transesterification reactions of waste cooking oil. The influence of the diatomite substrate and the integration of metallic Ni0 in inducing the catalytic activity were evaluated in a series of transesterification reactions. The experimental conditions were adjusted according to the response surface methodology and the central composite statistical design. Experimentally, the diatomite substrate and the Ni0 metal induced the efficiency of the reaction to achieve a yield of 73.4% (NiO@diatomite) and 91% (Ni/NiO@diatomite), respectively, as compared to 66% for the pure phase (NiO). This was obtained under experimental conditions of 80 °C temperature, 100 min time, 12:1 methanol/oil molar ratio, and 3.75 wt % loading. The theoretical optimization functions of the designs suggested enhancement to the experimental conditions to achieve a yield of 76.3% by NiO@diatomite and 93.2% by Ni/NiO@diatomite. This reflected the role of the diatomite substrate in enhancing the surface area, the adsorption of fatty acids, and the exposure of the catalytic sites in addition to the effect of the Ni0 metal in enhancing the catalytic reactivity of the final product. Finally, the biodiesel produced over Ni/NiO@diatomite as the best product was of acceptable properties according to the international standards.

7.
J Biotechnol ; 322: 66-73, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681851

RESUMO

Problem of chromium (Cr) pollution is of great scientific concern as it adversely affects crop productivity worldwide. Therefore, scientific efforts are being made to minimize Cr toxicity in crop plants by using various methods. Of these methods, use of certain chemicals like ascorbic acid (ASC), glutathione, proline, nutrients, etc. has shown promising results. Therefore, in this study, we have tested a role of ASC in regulating hexavalent chromium [Cr(VI)] toxicity in tomato roots. Chromium (VI) reduced length, dry weight, fitness and tissue density of roots due to enhanced cellular accumulation of Cr which leads to the cell death. Chromium (VI) also declined ASC pool and activity of its regenerating enzymes along with enhanced level of oxidative stress and damage to lipids and proteins. However, exogenous addition of ASC significantly reversed toxic effects of Cr(VI) in tomato roots. Furthermore, addition of lycorine (inhibitor of ASC biosynthesis) interestingly augmented Cr(VI) toxicity. However, exogenous addition of ASC reversed toxic effect of lycorine suggesting that endogenous ASC has role in alleviating Cr(VI) toxicity in tomato roots.


Assuntos
Ácido Ascórbico/farmacologia , Cromo/toxicidade , Raízes de Plantas , Solanum lycopersicum , Estresse Fisiológico/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Poluentes do Solo/toxicidade
8.
Ecotoxicol Environ Saf ; 201: 110822, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534334

RESUMO

Boron (B) toxicity is an important abiotic constraint that limits crop productivity mainly in arid and semi-arid areas of the world. High levels of B in soil disturbs several physiological and biochemical processes in plant. The aim of this study was to investigate the function of melatonin (Mel) in the regulation of carbohydrate and proline (Pro) metabolism, photosynthesis process and antioxidant system of wheat seedlings under B toxicity conditions. High levels of B inhibited net photosynthetic rate (PN), stomatal conductance (gs), content of chlorophyll (Chl) a, b, δ-aminolevulinic acid (δ-ALA), nitrogen (N) and phosphorus (P), and increased accumulation of B, Chl degradation and activity of chlorophyllase (Chlase; a Chl degrading enzyme), and downregulated the activity of enzymes (δ-ALAD; δ-aminolevulinic acid dehydratase) involved in the biosynthesis of photosynthesis pigments, photosynthesis (carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase) and carbohydrate metabolism (cell wall invertase, CWI) in wheat seedlings. Also, high levels of B caused oxidative damage by increasing the content of malondialdehyde, superoxide anion and H2O2, and activity of glycolate oxidase (an H2O2-producing enzyme) in leaves of seedlings. However, foliar application of Mel significantly improved photosynthetic pigments concentration by increasing δ-ALA, δ-ALAD and decreasing Chl degradation and Chlase activity and led to an increase of plant growth attributes under both B toxicity and non-toxicity conditions. Under normal and B toxicity conditions, exogenous Mel also improved content of N, P, total soluble carbohydrates (TSCs) and Pro, and upregulated activity of CWI and Δ1-pyrroline-5-carboxylate synthetase. Mel significantly suppressed the adverse effects of excess B by alleviating cellular oxidative damage through enhanced reactive oxygen species scavenging by superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and lipoxygenase, and content of total phenolic compounds (TPC), ascorbate and reduced glutathione. These results postulate that Mel induced plant defense mechanisms by enhancing Pro, TSCs, TPC, nutrients (N and P) uptake and enzymatic and non-enzymatic antioxidants.


Assuntos
Antioxidantes/metabolismo , Boro/toxicidade , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
9.
Saudi J Biol Sci ; 25(2): 313-319, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29472784

RESUMO

The current study reports rapid and easy method for synthesis of eco-friendly silver nanoparticles (AgNPs) using Coriandrum sativum leaves extract as a reducing and covering agent. The bio-reductive synthesis of AgNPs was monitored using a scanning double beam UV-vis spectrophotometer. Transmission electron microscopy (TEM) was used to characterize the morphology of AgNPs obtained from plant extracts. X-ray diffraction (XRD) patterns of AgNPs indicate that the structure of AgNPs is the face centered cubic structure of metallic silver. The surface morphology and topography of the AgNPs were examined by scanning electron microscopy and the energy dispersive spectrum revealed the presence of elemental silver in the sample. The silver phyto nanoparticles were collected from plant extract and tested growth potential and metabolic pattern in (Lupinus termis L.) seedlings upon exposure to different concentrations of AgNPs. The seedlings were exposed to various concentrations of (0, 0.1, 0.3 and 0.5 mg L-1) AgNPs for ten days. Significant reduction in shoot and root elongation, shoot and root fresh weights, total chlorophyll and total protein contents were observed under the higher concentrations of AgNPs. Exposure to 0.5 mg L-1 of AgNPs decreased sugar contents and caused significant foliar proline accumulation which considered as an indicator of the stressful effect of AgNPs on seedlings. AgNPs exposure resulted in a dose dependent decrease in different growth parameters and also caused metabolic disorders as evidenced by decreased carbohydrates and protein contents. Further studies needed to find out the efficacy, longevity and toxicity of AgNPs toward photosynthetic system and antioxidant parameters to improve the current investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...