Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(22)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373356

RESUMO

In sodium-ion batteries (SIBs), TiO2or sodium titanates are discussed as cost-effective anode material. The use of ultrafine TiO2particles overcomes the effect of intrinsically low electronic and ionic conductivity that otherwise limits the electrochemical performance and thus its Na-ion storage capacity. Especially, TiO2nanoparticles integrated in a highly conductive, large surface-area, and stable graphene matrix can achieve an exceptional electrochemical rate performance, durability, and increase in capacity. We report the direct and scalable gas-phase synthesis of TiO2and graphene and their subsequent self-assembly to produce TiO2/graphene nanocomposites (TiO2/Gr). Transmission electron microscopy shows that the TiO2nanoparticles are uniformly distributed on the surface of the graphene nanosheets. TiO2/Gr nanocomposites with graphene loadings of 20 and 30 wt% were tested as anode in SIBs. With the outstanding electronic conductivity enhancement and a synergistic Na-ion storage effect at the interface of TiO2nanoparticles and graphene, nanocomposites with 30 wt% graphene exhibited particularly good electrochemical performance with a reversible capacity of 281 mAh g-1at 0.1 C, compared to pristine TiO2nanoparticles (155 mAh g-1). Moreover, the composite showed excellent high-rate performance of 158 mAh g-1at 20 C and a reversible capacity of 154 mAh g-1after 500 cycles at 10 C. Cyclic voltammetry showed that the Na-ion storage is dominated by surface and TiO2/Gr interface processes rather than slow, diffusion-controlled intercalation, explaining its outstanding rate performance. The synthesis route of these high-performing nanocomposites provides a highly promising strategy for the scalable production of advanced nanomaterials for SIBs.

2.
Sci Total Environ ; 864: 161079, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565888

RESUMO

The stability of graphene structure in sulfur-doped graphene catalyst is demonstrated to be a key aspect during the ozonation process. Enhancing the stability of the sulfur-doped graphene structure is therefore important to improve its catalytic activity during the ozonation process. However, this has remained a challenge so far. Therefore, we adopted a low-energy microwave plasma technique to synthesize a high purity sulfur-doped graphene (S ⎯ Gr) catalyst for the ozonation process. The effect of S ⎯ Gr in the ozonation process was tested using carbamazepine (CBZ; 0.05 mM) as a probe compound. A complete CBZ removal was obtained at an ozone concentration of 0.08 mM while in comparison with single O3, ∼1.5 and 2.5 times decrease in the formation of the two important intermediate transformation products i.e., BQM (1-(2-benzaldehyde) - 4-hydroxy (1H, 3H)-quinazoline-2-one) and BQD (1-(2-benzaldehyde) - (1H, 3H)-quinazoline-2, 4-dione) was observed. Radical scavenging experiments confirmed the formation of HO. The XPS results showed that the activity of S ⎯ Gr towards the formation of HO was positively related to S-bearing carbon atoms at the edge of the graphene structure. Therefore, the addition of S ⎯ Gr is directly linked with the formation of HO, which further contributed to the improved elimination of intermediate transformation products. With a low sulfur loss of 1 %, the microwave plasma synthesized S ⎯ Gr catalyst remained stable during ozonation, implying its feasibility in practical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA