Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolism ; 107: 154215, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32209360

RESUMO

OBJECTIVE: PTEN haploinsufficiency plays an important role in prostate cancer development in men. However, monoallelic deletion of Pten gene failed to induce high prostate intraepithelial neoplasia (PIN) until Pten+/- mice aged or fed a high-calorie diet. Because CEACAM1, a cell adhesion molecule with a potential tumor suppression activity, is induced in Pten+/- prostates, the study aimed at examining whether the rise of CEACAM1 limited neoplastic progression in Pten+/- prostates. METHODS: Pten+/- were crossbred with Cc1-/- mice harboring a null deletion of Ceacam1 gene to produce Pten+/-/Cc1-/- double mutants. Prostates from 7-month old male mice were analyzed histologically and biochemically for PIN progression. RESULTS: Deleting Ceacam1 in Pten+/- mice caused an early development of high-grade PIN in parallel to hyperactivation of PI3 kinase/Akt and Ras/MAP kinase pathways, with an increase in cell proliferation, epithelial-to-mesenchymal transition, angiogenesis and inflammation relative to Pten+/- and Cc1-/- individual mutants. It also caused a remarkable increase in lipogenesis in prostate despite maintaining insulin sensitivity. Concomitant Ceacam1 deletion with Pten+/- activated the IL-6/STAT3 signaling pathways to suppress Irf-8 transcription that in turn, led to a decrease in the expression level of promyelocytic leukemia gene, a well characterized tumor suppressor in prostate. CONCLUSIONS: Ceacam1 deletion accelerated high-grade prostate intraepithelial neoplasia in Pten haploinsufficient mice while preserving insulin sensitivity. This demonstrated that the combined loss of Ceacam1 and Pten advanced prostate cancer by increasing lipogenesis and modifying the STAT3-dependent inflammatory microenvironment of prostate.


Assuntos
Antígeno Carcinoembrionário/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Animais , Progressão da Doença , Haploinsuficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
2.
Sci Rep ; 9(1): 1533, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733517

RESUMO

We have developed a transgenic mouse model of Type 1 Diabetes (T1D) in which human GAD65 is expressed in pancreatic ß-cells, and human MHC-II is expressed on antigen presenting cells. Induced GAD65 antigen presentation activates T-cells, which initiates the downstream events leading to diabetes. In our humanized mice, we have shown downregulation of eukaryotic translation initiation factor 5 A (elF5A), expressed only in actively dividing mammalian cells. In-vivo inhibition of elF5A hypusination by deoxyhypusine synthase (DHS) inhibitor "GC7" was studied; DHS inhibitor alters the pathophysiology in our mouse model by catalyzing the crucial hypusination and the rate-limiting step of elF5A activation. In our mouse model, we have shown that inhibition of eIF5A resets the pro-inflammatory bias in the pancreatic microenvironment. There was: (a) reduction of Th1/Th17 response, (b) an increase in Treg numbers, (c) debase in IL17 and IL21 cytokines levels in serum, (d) lowering of anti-GAD65 antibodies, and (e) ablation of the ER stress that improved functionality of the ß-cells, but minimal effect on the cytotoxic CD8 T-cell (CTL) mediated response. Conclusively, immune modulation, in the case of T1D, may help to manipulate inflammatory responses, decreasing disease severity, and may help manage T1D in early stages of disease. Our study also demonstrates that without manipulating the CTLs mediated response extensively, it is difficult to treat T1D.


Assuntos
Inibidores Enzimáticos/química , Glutamato Descarboxilase/genética , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linfócitos T/metabolismo , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Regulação para Baixo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Heptanos/química , Heptanos/metabolismo , Heptanos/farmacologia , Humanos , Células Secretoras de Insulina/metabolismo , Interleucinas/sangue , Masculino , Camundongos , Camundongos Transgênicos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/antagonistas & inibidores , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Linfócitos T/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
3.
J Immunother Cancer ; 7(1): 3, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616690

RESUMO

BACKGROUND: Thyroid cancer and thyroid autoimmunity are considered opposite extremes of immune-responses. However, several studies have suggested that thyroid cancer coexists with autoimmune thyroid diseases like Hashimoto Thyroiditis (HT) and Graves disease (GD). We have shown that the risk of developing thyroid cancer is higher in patients with a silent form of autoimmune thyroid disease -Euthyroid Hashimoto Thyroiditis-(EHT). METHODS: We analyzed data from 2633 consecutive patients with GD, HT, EHT and non-Autoimmune Thyroid Disease (Non-AITD) for the presence of Differentiated Thyroid Cancer (DTC). We further investigated the microenvironment, and cellular mechanism of protection from DTC in GD/EHT by ex-vivo aspirating infiltrates from thyroid samples. We also re-constituted in vitro the in-vivo microenvironment to mimic an in-vivo context. We isolated NK cells and differentiated macrophages into M1 and M2 phenotype from healthy human peripheral blood monocytes. RESULTS: DTC was less frequent/aggressive in GD as compared to EHT or Non-AITD. Intra-thyroidal immune-cell profiling revealed differential Natural Killer (NK) cell activity and macrophage polarization in the settings of GD versus EHT. In GD, NK-cells were activated, and macrophages showed M1-like phenotype whereas, in EHT, NK-cells were less active and macrophages displayed M2-like phenotype. Furthermore, in vitro co-cultures of NK-cells with differentiated macrophage subsets revealed that the presence of activated NK (NA) cells favors M1 macrophages, boosts macrophage action and amplifies the innate defense mechanisms. Moreover, co-culture of M2 macrophages with NA, increases the cytotoxicity of NK-cells and favors a pro-inflammatory microenvironment that reverts the anti-inflammatory M2 towards pro-inflammatory M1. CONCLUSION: Surveillance innate immune-cells like Natural Killer (NK) cells and macrophages are complementary to each other in their actions. We discovered here that activated NK-cells in the background of the thyroid autoimmune disease, GD, drive macrophage differentiation to the M1/killer phenotype which in turn is cytotoxic to cancer cells and down regulates the M2/repair phenotype. Understanding the molecular basis of macrophage-NK cell interface in Thyroid Cancer, ETH and GD will open new vistas for immunopathology and therapeutic intervention. Macrophages/innate immunity can be modulated from M2 to M1 phenotype to help treat thyroid cancer as naturally done by GD.


Assuntos
Doença de Graves/imunologia , Doença de Hashimoto/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Neoplasias da Glândula Tireoide/imunologia , Humanos , Imunidade Inata , Neoplasias da Glândula Tireoide/patologia
4.
Genome Biol Evol ; 7(2): 481-92, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25573959

RESUMO

Nucleotide sequence differences on the whole-genome scale have been computed for 1,092 people from 14 populations publicly available by the 1000 Genomes Project. Total number of differences in genetic variants between 96,464 human pairs has been calculated. The distributions of these differences for individuals within European, Asian, or African origin were characterized by narrow unimodal peaks with mean values of 3.8, 3.5, and 5.1 million, respectively, and standard deviations of 0.1-0.03 million. The total numbers of genomic differences between pairs of all known relatives were found to be significantly lower than their respective population means and in reverse proportion to the distance of their consanguinity. By counting the total number of genomic differences it is possible to infer familial relations for people that share down to 6% of common loci identical-by-descent. Detection of familial relations can be radically improved when only very rare genetic variants are taken into account. Counting of total number of shared very rare single nucleotide polymorphisms (SNPs) from whole-genome sequences allows establishing distant familial relations for persons with eighth and ninth degrees of relationship. Using this analysis we predicted 271 distant familial pairwise relations among 1,092 individuals that have not been declared by 1000 Genomes Project. Particularly, among 89 British and 97 Chinese individuals we found three British-Chinese pairs with distant genetic relationships. Individuals from these pairs share identical-by-descent DNA fragments that represent 0.001%, 0.004%, and 0.01% of their genomes. With affordable whole-genome sequencing techniques, very rare SNPs should become important genetic markers for familial relationships and population stratification.


Assuntos
Variação Genética , Genoma Humano , Filogenia , Cromossomos Humanos/genética , Genética Populacional , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...