Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 718, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468758

RESUMO

Mapping the human body at single cell resolution in three dimensions (3D) is important for understanding cellular interactions in context of tissue and organ organization. 2D spatial cell analysis in a single tissue section may be limited by cell numbers and histology. Here we show a workflow for 3D reconstruction of multiplexed sequential tissue sections: MATRICS-A (Multiplexed Image Three-D Reconstruction and Integrated Cell Spatial - Analysis). We demonstrate MATRICS-A in 26 serial sections of fixed skin (stained with 18 biomarkers) from 12 donors aged between 32-72 years. Comparing the 3D reconstructed cellular data with the 2D data, we show significantly shorter distances between immune cells and vascular endothelial cells (56 µm in 3D vs 108 µm in 2D). We also show 10-70% more T cells (total) within 30 µm of a neighboring T helper cell in 3D vs 2D. Distances of p53, DDB2 and Ki67 positive cells to the skin surface were consistent across all ages/sun exposure and largely localized to the lower stratum basale layer of the epidermis. MATRICS-A provides a framework for analysis of 3D spatial cell relationships in healthy and aging organs and could be further extended to diseased organs.


Assuntos
Células Endoteliais , Imageamento Tridimensional , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Imageamento Tridimensional/métodos , Densidade Microvascular , Luz Solar , Envelhecimento , Contagem de Células
2.
Viruses ; 12(8)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717786

RESUMO

Over the last 15 years, advances in immunofluorescence-imaging based cycling methods, antibody conjugation methods, and automated image processing have facilitated the development of a high-resolution, multiplexed tissue immunofluorescence (MxIF) method with single cell-level quantitation termed Cell DIVETM. Originally developed for fixed oncology samples, here it was evaluated in highly fixed (up to 30 days), archived monkeypox virus-induced inflammatory skin lesions from a retrospective study in 11 rhesus monkeys to determine whether MxIF was comparable to manual H-scoring of chromogenic stains. Six protein markers related to immune and cellular response (CD68, CD3, Hsp70, Hsp90, ERK1/2, ERK1/2 pT202_pY204) were manually quantified (H-scores) by a pathologist from chromogenic IHC double stains on serial sections and compared to MxIF automated single cell quantification of the same markers that were multiplexed on a single tissue section. Overall, there was directional consistency between the H-score and the MxIF results for all markers except phosphorylated ERK1/2 (ERK1/2 pT202_pY204), which showed a decrease in the lesion compared to the adjacent non-lesioned skin by MxIF vs an increase via H-score. Improvements to automated segmentation using machine learning and adding additional cell markers for cell viability are future options for improvement. This method could be useful in infectious disease research as it conserves tissue, provides marker colocalization data on thousands of cells, allowing further cell level data mining as well as a reduction in user bias.


Assuntos
Imunofluorescência/métodos , Imuno-Histoquímica/métodos , Mpox/patologia , Pele/virologia , Animais , Biomarcadores/análise , Compostos Cromogênicos , Feminino , Processamento de Imagem Assistida por Computador , Macaca mulatta , Masculino , Monkeypox virus/patogenicidade , Estudos Retrospectivos , Análise de Célula Única , Pele/patologia , Coloração e Rotulagem
3.
PLoS One ; 14(12): e0219724, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31881020

RESUMO

Glioma is recognized to be a highly heterogeneous CNS malignancy, whose diverse cellular composition and cellular interactions have not been well characterized. To gain new clinical- and biological-insights into the genetically-bifurcated IDH1 mutant (mt) vs wildtype (wt) forms of glioma, we integrated data from protein, genomic and MR imaging from 20 treatment-naïve glioma cases and 16 recurrent GBM cases. Multiplexed immunofluorescence (MxIF) was used to generate single cell data for 43 protein markers representing all cancer hallmarks, Genomic sequencing (exome and RNA (normal and tumor) and magnetic resonance imaging (MRI) quantitative features (protocols were T1-post, FLAIR and ADC) from whole tumor, peritumoral edema and enhancing core vs equivalent normal region were also collected from patients. Based on MxIF analysis, 85,767 cells (glioma cases) and 56,304 cells (GBM cases) were used to generate cell-level data for 24 biomarkers. K-means clustering was used to generate 7 distinct groups of cells with divergent biomarker profiles and deconvolution was used to assign RNA data into three classes. Spatial and molecular heterogeneity metrics were generated for the cell data. All features were compared between IDH mt and IDHwt patients and were finally combined to provide a holistic/integrated comparison. Protein expression by hallmark was generally lower in the IDHmt vs wt patients. Molecular and spatial heterogeneity scores for angiogenesis and cell invasion also differed between IDHmt and wt gliomas irrespective of prior treatment and tumor grade; these differences also persisted in the MR imaging features of peritumoral edema and contrast enhancement volumes. A coherent picture of enhanced angiogenesis in IDHwt tumors was derived from multiple platforms (genomic, proteomic and imaging) and scales from individual proteins to cell clusters and heterogeneity, as well as bulk tumor RNA and imaging features. Longer overall survival for IDH1mt glioma patients may reflect mutation-driven alterations in cellular, molecular, and spatial heterogeneity which manifest in discernable radiological manifestations.


Assuntos
Glioma/genética , Isocitrato Desidrogenase/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Feminino , Imunofluorescência/métodos , Heterogeneidade Genética , Humanos , Isocitrato Desidrogenase/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Proteômica , Análise de Sequência de RNA/métodos , Análise de Célula Única , Sequenciamento do Exoma/métodos
4.
BMC Bioinformatics ; 19(1): 365, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285608

RESUMO

BACKGROUND: Automatic and reliable characterization of cells in cell cultures is key to several applications such as cancer research and drug discovery. Given the recent advances in light microscopy and the need for accurate and high-throughput analysis of cells, automated algorithms have been developed for segmenting and analyzing the cells in microscopy images. Nevertheless, accurate, generic and robust whole-cell segmentation is still a persisting need to precisely quantify its morphological properties, phenotypes and sub-cellular dynamics. RESULTS: We present a single-channel whole cell segmentation algorithm. We use markers that stain the whole cell, but with less staining in the nucleus, and without using a separate nuclear stain. We show the utility of our approach in microscopy images of cell cultures in a wide variety of conditions. Our algorithm uses a deep learning approach to learn and predict locations of the cells and their nuclei, and combines that with thresholding and watershed-based segmentation. We trained and validated our approach using different sets of images, containing cells stained with various markers and imaged at different magnifications. Our approach achieved a 86% similarity to ground truth segmentation when identifying and separating cells. CONCLUSIONS: The proposed algorithm is able to automatically segment cells from single channel images using a variety of markers and magnifications.


Assuntos
Microscopia/métodos , Algoritmos , Humanos
5.
Cancer Res ; 77(21): e71-e74, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092944

RESUMO

We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environment), an open-source tool developed to assist cancer researchers in interactive hypothesis testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and the interactions between different cell phenotypes and noncellular constituents. Specifically, we foresee applications in phenotyping cells within tumor microenvironments, recognizing tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal separation, and identification of heterotypic signaling networks underlying microdomains. The THRIVE platform provides an integrated workflow for analyzing whole-slide immunofluorescence images and tissue microarrays, including algorithms for segmentation, quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a maintainable code base using open-source libraries, and an extensible framework for customizing algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence images in mind, and, by providing a platform to efficiently analyze high-dimensional immunofluorescence signals, we hope to advance these data toward mainstream adoption in cancer research. Cancer Res; 77(21); e71-74. ©2017 AACR.


Assuntos
Heterogeneidade Genética , Neoplasias/genética , Imagem Óptica/estatística & dados numéricos , Software , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/patologia , Imagem Óptica/métodos , Análise Serial de Tecidos/estatística & dados numéricos
6.
JCI Insight ; 2(11)2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28570279

RESUMO

Intestinal tuft cells are a rare, poorly understood cell type recently shown to be a critical mediator of type 2 immune response to helminth infection. Here, we present advances in segmentation algorithms and analytical tools for multiplex immunofluorescence (MxIF), a platform that enables iterative staining of over 60 antibodies on a single tissue section. These refinements have enabled a comprehensive analysis of tuft cell number, distribution, and protein expression profiles as a function of anatomical location and physiological perturbations. Based solely on DCLK1 immunoreactivity, tuft cell numbers were similar throughout the mouse small intestine and colon. However, multiple subsets of tuft cells were uncovered when protein coexpression signatures were examined, including two new intestinal tuft cell markers, Hopx and EGFR phosphotyrosine 1068. Furthermore, we identified dynamic changes in tuft cell number, composition, and protein expression associated with fasting and refeeding and after introduction of microbiota to germ-free mice. These studies provide a foundational framework for future studies of intestinal tuft cell regulation and demonstrate the utility of our improved MxIF computational methods and workflow for understanding cellular heterogeneity in complex tissues in normal and disease states.

7.
J Pathol Inform ; 7: 47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994939

RESUMO

BACKGROUND: Measures of spatial intratumor heterogeneity are potentially important diagnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial relationships among cells including cancer and stromal cells in the tumor microenvironment (TME) are key contributors to heterogeneity. METHODS: We demonstrate how to quantify spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity patterns and map the spatial distribution of the biomarker patterns with a network. We then describe the pairwise association statistics for each pattern within the network using pointwise mutual information (PMI) and visually represent heterogeneity with a two-dimensional map. RESULTS: We found a salient set of 8 biomarker patterns to describe cellular phenotypes from a tissue microarray cohort containing 4 different breast cancer subtypes. After computing PMI for each pair of biomarker patterns in each patient and tumor replicate, we visualize the interactions that contribute to the resulting association statistics. Then, we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI maps and heterogeneity scores from patients across the 4 different cancer subtypes. Estrogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest heterogeneity score among those tested, while estrogen receptor negative invasive ductal carcinoma patient, AL13-14, exhibited the lowest heterogeneity score. CONCLUSIONS: This paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion (via PMI), which departs from the purely qualitative approaches currently used in the clinic. PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well as spatial data from complementary in situ methods including FISSEQ and CyTOF, sampling many different components within the TME. We hypothesize that PMI will uncover key spatial interactions in the TME that contribute to disease proliferation and progression.

8.
Cancer Res ; 76(9): 2573-86, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27197264

RESUMO

Treatment of metastatic gastric cancer typically involves chemotherapy and monoclonal antibodies targeting HER2 (ERBB2) and VEGFR2 (KDR). However, reliable methods to identify patients who would benefit most from a combination of treatment modalities targeting the tumor stroma, including new immunotherapy approaches, are still lacking. Therefore, we integrated a mouse model of stromal activation and gastric cancer genomic information to identify gene expression signatures that may inform treatment strategies. We generated a mouse model in which VEGF-A is expressed via adenovirus, enabling a stromal response marked by immune infiltration and angiogenesis at the injection site, and identified distinct stromal gene expression signatures. With these data, we designed multiplexed IHC assays that were applied to human primary gastric tumors and classified each tumor to a dominant stromal phenotype representative of the vascular and immune diversity found in gastric cancer. We also refined the stromal gene signatures and explored their relation to the dominant patient phenotypes identified by recent large-scale studies of gastric cancer genomics (The Cancer Genome Atlas and Asian Cancer Research Group), revealing four distinct stromal phenotypes. Collectively, these findings suggest that a genomics-based systems approach focused on the tumor stroma can be used to discover putative predictive biomarkers of treatment response, especially to antiangiogenesis agents and immunotherapy, thus offering an opportunity to improve patient stratification. Cancer Res; 76(9); 2573-86. ©2016 AACR.


Assuntos
Neoplasias Gástricas/classificação , Neoplasias Gástricas/genética , Transcriptoma/genética , Microambiente Tumoral/genética , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Xenoenxertos , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Camundongos , Neovascularização Patológica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Análise Serial de Tecidos , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Histopathology ; 59(1): 40-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21771025

RESUMO

AIMS: To investigate the use of a computer-assisted technology for objective, cell-based quantification of molecular biomarkers in specified cell types in histopathology specimens, with the aim of advancing current visual estimation and pixel-level (rather than cell-based) quantification methods. METHODS AND RESULTS: Tissue specimens were multiplex-immunostained to reveal cell structures, cell type markers, and analytes, and imaged with multispectral microscopy. The image data were processed with novel software that automatically delineates and types each cell in the field, measures morphological features, and quantifies analytes in different subcellular compartments of specified cells.The methodology was validated with the use of cell blocks composed of differentially labelled cultured cells mixed in known proportions, and evaluated on human breast carcinoma specimens for quantifying human epidermal growth factor receptor 2, estrogen receptor, progesterone receptor, Ki67, phospho-extracellular signal-related kinase, and phospho-S6. Automated cell-level analyses closely matched human assessments, but, predictably, differed from pixel-level analyses of the same images. CONCLUSIONS: Our method reveals the type, distribution, morphology and biomarker state of each cell in the field, and allows multiple biomarkers to be quantified over specified cell types, regardless of their abundance. It is ideal for studying specimens from patients in clinical trials of targeted therapeutic agents, for investigating minority stromal cell subpopulations, and for phenotypic characterization to personalize therapy and prognosis.


Assuntos
Biomarcadores/metabolismo , Imuno-Histoquímica/métodos , Automação Laboratorial/métodos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Membrana Celular/metabolismo , Membrana Celular/patologia , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Citoplasma/metabolismo , Citoplasma/patologia , Diagnóstico por Computador/métodos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Técnicas Histológicas/métodos , Humanos , Processamento de Imagem Assistida por Computador , Queratinas/metabolismo , Antígeno Ki-67/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo
10.
Methods Cell Biol ; 102: 161-205, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21704839

RESUMO

Imaging cytometry plays an increasingly important role in all fields of biological and medical sciences. It has evolved into a complex and powerful discipline amalgamating image acquisition technologies and quantitative digital image analysis. This chapter presents an overview of the complex and ever-developing landscape of imaging cytometry, highlighting the imaging and quantitative performance of a wide range of available instruments based on their methods of sample illumination and the detection technologies they employ. Each of these technologies has inherent advantages and shortcomings stemming from its design. It is therefore paramount to assess the appropriateness of all of the imaging cytometry options available to determine the optimal choice for specific types of studies. Laser scanning cytometry (LSC), the original imaging cytometry technology, is an attractive choice for analysis of both cellular and tissue specimens. Quantitative performance, flexibility, and the benefits of preserving native sample architecture and avoiding the introduction of artificial signals, particularly in cell-signaling studies and multicolor tissue analysis, are speeding the adoption of LSC and opening up new possibilities for developing sophisticated applications.


Assuntos
Citometria de Varredura a Laser/métodos , Análise de Célula Única/métodos , Animais , Antígenos de Superfície/química , Apoptose , Ciclo Celular , Senescência Celular , Dano ao DNA , Corantes Fluorescentes , Humanos , Imunofenotipagem/métodos , Citometria de Varredura a Laser/instrumentação , Análise de Célula Única/instrumentação , Análise Serial de Tecidos/métodos
11.
IEEE Trans Biomed Eng ; 57(4): 841-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19884070

RESUMO

Automatic segmentation of cell nuclei is an essential step in image cytometry and histometry. Despite substantial progress, there is a need to improve accuracy, speed, level of automation, and adaptability to new applications. This paper presents a robust and accurate novel method for segmenting cell nuclei using a combination of ideas. The image foreground is extracted automatically using a graph-cuts-based binarization. Next, nuclear seed points are detected by a novel method combining multiscale Laplacian-of-Gaussian filtering constrained by distance-map-based adaptive scale selection. These points are used to perform an initial segmentation that is refined using a second graph-cuts-based algorithm incorporating the method of alpha expansions and graph coloring to reduce computational complexity. Nuclear segmentation results were manually validated over 25 representative images (15 in vitro images and 10 in vivo images, containing more than 7400 nuclei) drawn from diverse cancer histopathology studies, and four types of segmentation errors were investigated. The overall accuracy of the proposed segmentation algorithm exceeded 86%. The accuracy was found to exceed 94% when only over- and undersegmentation errors were considered. The confounding image characteristics that led to most detection/segmentation errors were high cell density, high degree of clustering, poor image contrast and noisy background, damaged/irregular nuclei, and poor edge information. We present an efficient semiautomated approach to editing automated segmentation results that requires two mouse clicks per operation.


Assuntos
Núcleo Celular/fisiologia , Citometria por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Animais , Mama/citologia , Mama/ultraestrutura , Linhagem Celular Tumoral , Análise por Conglomerados , Feminino , Histocitoquímica , Humanos , Camundongos , Imagens de Fantasmas , Reprodutibilidade dos Testes
12.
J Neural Eng ; 5(2): 203-13, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18477815

RESUMO

Polyacrylamide and poly(ethylene glycol) diacrylate hydrogels were synthesized and characterized for use as drug release and substrates for neuron cell culture. Protein release kinetics was determined by incorporating bovine serum albumin (BSA) into hydrogels during polymerization. To determine if hydrogel incorporation and release affect bioactivity, alkaline phosphatase was incorporated into hydrogels and a released enzyme activity determined using the fluorescence-based ELF-97 assay. Hydrogels were then used to deliver a brain-derived neurotrophic factor (BDNF) from hydrogels polymerized over planar microelectrode arrays (MEAs). Primary hippocampal neurons were cultured on both control and neurotrophin-containing hydrogel-coated MEAs. The effect of released BDNF on neurite length and process arborization was investigated using automated image analysis. An increased spontaneous activity as a response to the released BDNF was recorded from the neurons cultured on the top of hydrogel layers. These results demonstrate that proteins of biological interest can be incorporated into hydrogels to modulate development and function of cultured neural networks. These results also set the stage for development of hydrogel-coated neural prosthetic devices for local delivery of various biologically active molecules.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Materiais Revestidos Biocompatíveis/administração & dosagem , Microeletrodos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/química , Técnicas de Cultura de Células/métodos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Portadores de Fármacos/química , Hidrogéis/química , Ratos , Ratos Sprague-Dawley
13.
J Neurosci Methods ; 170(1): 165-78, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18294697

RESUMO

Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic 'divide and conquer' methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick ( approximately 100 microm) slices of rat brain tissue were labeled using three to five fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81 to 92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system.


Assuntos
Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Vasos Sanguíneos/anatomia & histologia , Vasos Sanguíneos/química , Encéfalo/citologia , Química Encefálica , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Circulação Cerebrovascular/fisiologia , Corantes , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/anatomia & histologia , Hipocampo/citologia , Hipocampo/fisiologia , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Masculino , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/classificação , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Software
14.
Cytometry A ; 73(1): 36-43, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18067123

RESUMO

Automated tracing of neuronal processes from 3D confocal microscopy images is essential for quantitative neuroanatomy and neuronal assays. Two basic approaches are described in the literature-one based on skeletonization and another based on sequential tracing along neuronal processes. This article presents algorithms for improving the rate of detection, and the accuracy of estimating the location and process angles at branching points for the latter class of algorithms. The problem of simultaneously detecting branch points and estimating their measurements is formulated as a generalized likelihood ratio test defined on a spatial neighborhood of each candidate point, in which likelihoods were computed using a ridge detection approach. The average detection rate increased from from 37 to 86%. The average error in locating the branch points decreased from 2.6 to 2.1 voxels in 3D images. The generalized hypothesis test improves the rate of detection of branching points, and the accuracy of location estimates, enabling a more complete extraction of neuroanatomy and more accurate counting of branch points in neuronal assays. More accurate branch point morphometry is valuable for image registration and change analysis.


Assuntos
Encéfalo/patologia , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Nêutrons , Algoritmos , Animais , Automação , Processamento de Imagem Assistida por Computador , Funções Verossimilhança , Modelos Neurológicos , Modelos Estatísticos , Neurônios/metabolismo , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...