Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Pediatr Genet ; 13(1): 1-5, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567172

RESUMO

Next-generation sequencing, such as whole-exome sequencing (WES), is increasingly used in the study of Mendelian disorders, yet many are reported as "negative." Inappropriate variant annotation and filtering steps are reasons for missing the molecular diagnosis. Noncoding variants, including splicing mutations, are examples of variants that can be overlooked. Herein, we report a family of four affected newborns, and all presented with severe congenital microcephaly. Initial research WES analysis identified a damaging homozygous variant in NME1 gene as a possible cause of primary microcephaly phenotype in these patients. However, reanalysis of the exome data uncovered a biallelic splice site variant in asparagine synthetase gene which seems to be the possible cause of the phenotype in these patients. This study highlights the importance of revisiting the exome data and the issue of "negative" exome and the afterward approaches to identify and prove new candidate genes.

2.
Am J Med Genet A ; 194(3): e63474, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37960980

RESUMO

Biallelic SPINT2 pathogenic variants cause a syndromic form of congenital diarrhea and enteropathy (OMIM 270420). To date, 35 patients have been reported and all presented with additional extra-intestinal features, apart from one case. We report on a 5-year-old girl who presented early in life with diarrhea and was found to have a novel homozygous variant in SPINT2. Pathological studies confirmed tufting enteropathy, and during her 5 years of life, she has not developed any extra-intestinal features. Molecular analysis detected a homozygous variant (NM_021102.4: c.203A>G (p. [Tyr68Cys]) in SPINT2. This is the first missense variant reported in the first Kunitz domain (KD1) of SPINT2 in humans. In vitro functional studies of this variant confirmed the deleterious effect leading to the loss of inhibitory activity of the intestinal serine proteases. This is the first description of SPINT2-related diarrhea in a patient who lived without long-term total parenteral nutrition. This study expands the clinical and molecular characteristics of SPINT2-related conditions.


Assuntos
Diarreia , Glicoproteínas de Membrana , Humanos , Feminino , Pré-Escolar , Glicoproteínas de Membrana/genética , Diarreia/genética , Diarreia/congênito , Intestinos , Mutação de Sentido Incorreto/genética , Serina Endopeptidases
3.
Eur J Hum Genet ; 32(2): 243-246, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985816

RESUMO

Synaptic Vesicle Glycoprotein 2 A (SV2A) is a membrane protein of synaptic vesicles and the binding site of antiepileptic drug levetiracetam. Biallelic Arg383Gln is reported in a family with intractable epilepsy earlier. Here, we report on the second family with early onset drug resistant epilepsy. We identified homozygous Arg289Ter variant by exome sequencing that segregated with the phenotype in the family. The affected children in these two families are normal at birth and developed recurrent seizures beginning in the second month of life and developed secondary failure of growth and development. Knock out mice models earlier had replicated the human phenotype observed in these two families. These findings support that biallelic loss of function variants in SV2A result in early onset intractable epilepsy in humans.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Animais , Criança , Humanos , Camundongos , Anticonvulsivantes/metabolismo , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
4.
Eur J Med Genet ; 67: 104903, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101565

RESUMO

LRP4 is expressed in many organs. It mediates SOST-dependent inhibition of bone formation and acts as an inhibitor of WNT signaling. It is also a postsynaptic end plate cell surface receptor at the neuromuscular junction and is central to its development, maintenance, and function. Pathogenic variants of LRP4 that specifically affect the canonical WNT signaling pathway are known to be associated with Cenani-Lenz syndactyly syndrome or the overlapping condition sclerosteosis. However, site-specific pathogenic variants of LRP4 have been associated with the congenital myasthenic syndrome (CMS) type 17 with no abnormal bone phenotype. Only two studies reported biallelic variants of LRP4 associated with CMS17 that presented during childhood. All three reported variants (NM_002334.4: p.Glu1233Ala, p.Glu1233Lys, or p.Arg1277His) are located within the 3'-edge of the third ß-propeller domain of LRP4. We report on a patient with a biallelic variant of the LRP4 gene presenting with a severe and neonatal lethal phenotype; we also provide a literature review of the previously reported patients. A female neonate, born to healthy consanguineous parents, presented with severe hypotonia, congenital diaphragmatic hernia, pulmonary hypertension, and progressive hypoxemia. Two of her siblings presented with a similar condition in the past, and all three died shortly after birth. Clinical exome sequencing revealed homozygosity for the pathogenic variant NM_002334.4:c.3698A > C (p.[Glu1233Ala]).


Assuntos
Hiperostose , Síndromes Miastênicas Congênitas , Sindactilia , Feminino , Humanos , Recém-Nascido , Proteínas Relacionadas a Receptor de LDL/genética , Síndromes Miastênicas Congênitas/genética , Junção Neuromuscular , Sindactilia/genética , Masculino
5.
medRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961665

RESUMO

The RNA exosome is an evolutionarily conserved complex required for both precise RNA processing and decay. Mutations in EXOSC genes encoding structural subunits of the complex are linked to several autosomal recessive disorders. Here, we describe a missense allele of the EXOSC4 gene, which causes a collection of clinical features in two affected siblings. This missense mutation (NM_019037.3: exon3:c.560T>C), changes a leucine residue within a highly conserved region of EXOSC4 to proline (p.Leu187Pro). The two affected individuals presented with prenatal growth restriction, failure to thrive, global developmental delay, intracerebral and basal ganglia calcifications, and kidney failure. Homozygosity for the damaging variant was identified through exome sequencing and Sanger sequencing confirmed segregation. To explore the functional consequences of this amino acid change, we modeled EXOSC4-L187P in the corresponding budding yeast protein, Rrp41 (Rrp41-L187P). Cells that express Rrp41-L187P as the sole copy of the essential Rrp41 protein show significant growth defects. The steady-state level of both the Rrp41-L187P and the EXOSC4-L187P proteins is significantly decreased compared to control Rrp41/EXOSC4. Consistent with this observation, targets of the RNA exosome accumulate in rrp41-L187P cells, including the 7S precursor of 5.8S rRNA. Polysome profiles show a significant decrease in translation in rrp41-L187P cells as compared to control cells with apparent incorporation of 7S pre-rRNA into polysomes. Taken together, this work adds the EXOSC4 subunit of the RNA exosome to the structural subunits of this complex that have been linked to human disease and defines foundational molecular defects that could contribute to the adverse growth phenotypes caused by this novel EXOSC4 pathogenic variant.

6.
Pediatr Neurol ; 148: 73-80, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688971

RESUMO

BACKGROUND: NOTCH3, a large type I transmembrane receptor expressed on arterial smooth muscle cells and capillary pericytes, features a diverse extracellular domain with 34 epidermal growth factor-like repeats. It exhibits distinct phenotypes due to variant zygosity and type; missense mutations cause CADASIL with cerebral vasculopathy, while null mutations lead to severe congenital manifestations. METHODS: This report describes two cases with homozygous loss- of- function variants in NOTCH3 along with their clinical manifestations. RESULTS: These patients presented with a severe congenital phenotype, including eye misalignment, visual impairment, epilepsy, global developmental delay, and subsequent development of pyramidal signs. Biallelic nonsense variants were discovered in both the cases (NM_000435.3:c.2203 C > T (p. [Arg735Ter]). Livedo reticularis was not reported in our cases, although it was present in previously reported patients. Autosomal recessive NOTCH3-related leukodystrophy is usually caused by biallelic null mutations in NOTCH3. CONCLUSIONS: The phenotype of biallelic null variants is associated with a more severe phenotype than the dominantly inherited form of the disease.

7.
Genet Med ; 25(11): 100938, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37454282

RESUMO

PURPOSE: Biallelic variants in TARS2, encoding the mitochondrial threonyl-tRNA-synthetase, have been reported in a small group of individuals displaying a neurodevelopmental phenotype but with limited neuroradiological data and insufficient evidence for causality of the variants. METHODS: Exome or genome sequencing was carried out in 15 families. Clinical and neuroradiological evaluation was performed for all affected individuals, including review of 10 previously reported individuals. The pathogenicity of TARS2 variants was evaluated using in vitro assays and a zebrafish model. RESULTS: We report 18 new individuals harboring biallelic TARS2 variants. Phenotypically, these individuals show developmental delay/intellectual disability, regression, cerebellar and cerebral atrophy, basal ganglia signal alterations, hypotonia, cerebellar signs, and increased blood lactate. In vitro studies showed that variants within the TARS2301-381 region had decreased binding to Rag GTPases, likely impairing mTORC1 activity. The zebrafish model recapitulated key features of the human phenotype and unraveled dysregulation of downstream targets of mTORC1 signaling. Functional testing of the variants confirmed the pathogenicity in a zebrafish model. CONCLUSION: We define the clinico-radiological spectrum of TARS2-related mitochondrial disease, unveil the likely involvement of the mTORC1 signaling pathway as a distinct molecular mechanism, and establish a TARS2 zebrafish model as an important tool to study variant pathogenicity.


Assuntos
RNA de Transferência , Peixe-Zebra , Animais , Humanos , Mutação , Peixe-Zebra/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Ligases , Fenótipo
8.
Genet Med ; 25(9): 100893, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179472

RESUMO

PURPOSE: Developmentally regulated Guanosine-5'-triphosphate-binding protein 1 (DRG1) is a highly conserved member of a class of GTPases implicated in translation. Although the expression of mammalian DRG1 is elevated in the central nervous system during development, and its function has been implicated in fundamental cellular processes, no pathogenic germline variants have yet been identified. Here, we characterize the clinical and biochemical consequences of DRG1 variants. METHODS: We collate clinical information of 4 individuals with germline DRG1 variants and use in silico, in vitro, and cell-based studies to study the pathogenicity of these alleles. RESULTS: We identified private germline DRG1 variants, including 3 stop-gained p.Gly54∗, p.Arg140∗, p.Lys263∗, and a p.Asn248Phe missense variant. These alleles are recessively inherited in 4 affected individuals from 3 distinct families and cause a neurodevelopmental disorder with global developmental delay, primary microcephaly, short stature, and craniofacial anomalies. We show that these loss-of-function variants (1) severely disrupt DRG1 messenger RNA/protein stability in patient-derived fibroblasts, (2) impair its GTPase activity, and (3) compromise its binding to partner protein ZC3H15. Consistent with the importance of DRG1 in humans, targeted inactivation of mouse Drg1 resulted in preweaning lethality. CONCLUSION: Our work defines a new Mendelian disorder of DRG1 deficiency. This study highlights DRG1's importance for normal mammalian development and underscores the significance of translation factor GTPases in human physiology and homeostasis.


Assuntos
Proteínas de Ligação ao GTP , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Proteínas de Transporte , GTP Fosfo-Hidrolases/genética , Mamíferos/metabolismo , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro
9.
Clin Immunol ; 252: 109646, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209807

RESUMO

BACKGROUND: Kikuchi-Fujimoto disease (KFD) is a self-limited inflammatory disease of unknown pathogenesis. Familial cases have been described and defects in classical complement components C1q and C4 have been identified in some patients. MATERIAL AND METHODS: We describe genetic and immune investigations of a 16 years old Omani male, a product of consanguineous marriage, who presented with typical clinical and histological features of KFD. RESULTS: We identified a novel homozygous single base deletion in C1S (c.330del; p. Phe110LeufsTer23) resulting in a defect in the classical complement pathway. The patient was negative for all serological markers of SLE. In contrast, two female siblings (also homozygous for the C1S mutation), one has autoimmune thyroid disease (Hashimoto thyroiditis) and a positive ANA and the other sibling has serology consistent with SLE. CONCLUSION: We report the first association between C1s deficiency and KFD.


Assuntos
Linfadenite Histiocítica Necrosante , Adolescente , Humanos , Masculino , Complemento C1s/genética , Linfadenite Histiocítica Necrosante/genética , Linfadenite Histiocítica Necrosante/complicações , Linfadenite Histiocítica Necrosante/patologia , Mutação com Perda de Função
10.
Hum Genet ; 142(4): 543-552, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36943452

RESUMO

Arthrogryposis multiplex congenita forms a broad group of clinically and etiologically heterogeneous disorders characterized by congenital joint contractures that involve at least two different parts of the body. Neurological and muscular disorders are commonly underlying arthrogryposis. Here, we report five affected individuals from three independent families sharing an overlapping phenotype with congenital contractures affecting shoulder, elbow, hand, hip, knee and foot as well as scoliosis, reduced palmar and plantar skin folds, microcephaly and facial dysmorphism. Using exome sequencing, we identified homozygous truncating variants in FILIP1 in all patients. FILIP1 is a regulator of filamin homeostasis required for the initiation of cortical cell migration in the developing neocortex and essential for the differentiation process of cross-striated muscle cells during myogenesis. In summary, our data indicate that bi-allelic truncating variants in FILIP1 are causative of a novel autosomal recessive disorder and expand the spectrum of genetic factors causative of arthrogryposis multiplex congenita.


Assuntos
Artrogripose , Contratura , Microcefalia , Humanos , Artrogripose/genética , Microcefalia/genética , Homozigoto , Fenótipo , Linhagem , Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética
11.
J Neuromuscul Dis ; 10(2): 293-299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36641683

RESUMO

BACKGROUND: Muscular A-type lamin-interacting protein (MLIP) has a regulatory role in myoblast differentiation and organization of myonuclear positioning in skeletal muscle. It is ubiquitously expressed but abundantly in cardiac, skeletal, and smooth muscles. Recently, two studies confirmed the causation of biallelic pathogenic variants in the MLIP gene of a novel myopathy phenotype. OBJECTIVE: Description of the phenotypic spectrum and features of MLIP-related myopathy. METHODS: report a patient with biallelic variants in MLIP gene with the clinical features, and histomorphological findings of MLIP-related myopathy and provide a literature review of the previously reported 12 patients. RESULTS: MLIP-related myopathy is characterized by episodes of rhabdomyolysis, myalgia triggered by mild to moderate exercise, mild muscle weakness, and sometimes cardiac involvement characterized by cardiomyopathy and cardiac rhythm abnormalities. CONCLUSIONS: This report reviews and extends the clinical features of a novel myopathy caused by biallelic pathogenic variants in the MLIP gene.


Assuntos
Doenças Musculares , Humanos , Laminas , Doenças Musculares/genética , Mialgia , Músculo Esquelético/patologia , Proteínas Musculares
12.
J Clin Immunol ; 43(2): 452-465, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324046

RESUMO

PURPOSE: Early identification of inborn errors of immunity (IEIs) is crucial due to the significant risk of morbidity and mortality. This study aimed to describe the genetic causes, clinical features, and survival rate of IEIs in Omani patients. METHODS: A prospective study of all Omani patients evaluated for immunodeficiency was conducted over a 17-year period. Clinical features and diagnostic immunological findings were recorded. Targeted gene testing was performed in cases of obvious immunodeficiency. For cases with less conclusive phenotypes, a gene panel was performed, followed by whole-exome sequencing if necessary. RESULTS: A total of 185 patients were diagnosed with IEIs during the study period; of these, 60.5% were male. Mean ages at symptom onset and diagnosis were 30.0 and 50.5 months, respectively. Consanguinity and a family history of IEIs were present in 86.9% and 50.8%, respectively. Most patients presented with lower respiratory infections (65.9%), followed by growth and development manifestations (43.2%). Phagocytic defects were the most common cause of IEIs (31.9%), followed by combined immunodeficiency (21.1%). Overall, 109 of 132 patients (82.6%) who underwent genetic testing received a genetic diagnosis, while testing was inconclusive for the remaining 23 patients (17.4%). Among patients with established diagnoses, 37 genes and 44 variants were identified. Autosomal recessive inheritance was present in 81.7% of patients with gene defects. Several variants were novel. Intravenous immunoglobulin therapy was administered to 39.4% of patients and 21.6% received hematopoietic stem cell transplantation. The overall survival rate was 75.1%. CONCLUSION: This study highlights the genetic causes of IEIs in Omani patients. This information may help in the early identification and management of the disease, thereby improving survival and quality of life.


Assuntos
Síndromes de Imunodeficiência , Qualidade de Vida , Masculino , Humanos , Feminino , Estudos Prospectivos , Testes Genéticos , Fenótipo , Consanguinidade , Síndromes de Imunodeficiência/genética
13.
Clin Genet ; 103(4): 484-491, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36576126

RESUMO

Protein translation is an essential cellular process and dysfunctional protein translation causes various neurodevelopmental disorders. The eukaryotic translation elongation factor 1A (eEF1A) delivers aminoacyl-tRNA to the ribosome, while the eEF1B complex acts as a guanine exchange factor (GEF) of GTP for GDP indirectly catalyzing the release of eEF1A from the ribosome. The gene EEF1D encodes the eEF1Bδ subunit of the eEF1B complex. EEF1D is alternatively spliced giving rise to one long and three short isoforms. Two different homozygous, truncating variants in EEF1D had been associated with severe intellectual disability and microcephaly in two families. The published variants only affect the long isoform of EEF1D that acts as a transcription factor of heat shock element proteins. By exome sequencing, we identified two different homozygous variants in EEF1D in two families with severe developmental delay, severe microcephaly, spasticity, and failure to thrive with optic atrophy, poor feeding, and recurrent aspiration pneumonia. The EEF1D variants reported in this study are localized in the C-terminal GEF domain, suggesting that a disturbed protein translation machinery might contribute to the neurodevelopmental phenotype. Pathogenic variants localized in both the alternatively spliced domain or the GEF domain of EEF1D cause a severe neurodevelopmental disorder with microcephaly and spasticity.


Assuntos
Microcefalia , Transtornos do Neurodesenvolvimento , Humanos , Guanina , Fatores de Troca do Nucleotídeo Guanina/genética , Transtornos do Neurodesenvolvimento/genética , Isoformas de Proteínas/genética , Fator 1 de Elongação de Peptídeos
15.
Sci Rep ; 12(1): 18862, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344539

RESUMO

Global Developmental Delay/Intellectual disability (ID) is the term used to describe various disorders caused by abnormal brain development and characterized by impairments in cognition, communication, behavior, or motor skills. In the past few years, whole-exome sequencing (WES) has been proven to be a powerful, robust, and scalable approach for candidate gene discoveries in consanguineous populations. In this study, we recruited 215 patients affected with ID from 118 Middle Eastern families. Whole-exome sequencing was completed for 188 individuals. The average age at which WES was completed was 8.5 years. Pathogenic or likely pathogenic variants were detected in 32/118 families (27%). Variants of uncertain significance were seen in 33/118 families (28%). The candidate genes with a possible association with ID were detected in 32/118 (27%) with a total number of 64 affected individuals. These genes are novel, were previously reported in a single family, or cause strikingly different phenotypes with a different mode of inheritance. These genes included: AATK, AP1G2, CAMSAP1, CCDC9B, CNTROB, DNAH14, DNAJB4, DRG1, DTNBP1, EDRF1, EEF1D, EXOC8, EXOSC4, FARSB, FBXO22, FILIP1, INPP4A, P2RX7, PRDM13, PTRHD1, SCN10A, SCYL2, SMG8, SUPV3L1, TACC2, THUMPD1, XPR1, ZFYVE28. During the 5 years of the study and through gene matching databases, several of these genes have now been confirmed as causative of ID. In conclusion, understanding the causes of ID will help understand biological mechanisms, provide precise counseling for affected families, and aid in primary prevention.


Assuntos
Proteínas F-Box , Deficiência Intelectual , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Linhagem , Sequenciamento do Exoma , Genes Recessivos , Fenótipo , Mutação , Fator 1 de Elongação de Peptídeos/genética , Proteínas de Membrana/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas F-Box/genética
16.
Eur J Med Genet ; 65(12): 104640, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36243336

RESUMO

Spondyloepimetaphyseal dysplasia-Shohat type (SEMDSH) is an ultra-rare type of skeletal dysplasia. Only nine patients from six families have been reported and genetically confirmed to have biallelic pathogenic variants in the DDRGK1 gene. We present a patient with typical clinical features of the disorder, including disproportionate short-limbed short stature, short neck, short chest with pectus carinatum, exaggerated lumbar lordosis and marked genu vara. Our patient further showed microcephaly, unilateral choanal atresia and antenatal fractures, features that were not reported before in association with this disorder. Radiological changes over time were presented, including delayed epiphyseal ossification, broad metaphysis with marked irregularities that progressed with age, fibular overgrowth, and characteristic spine changes with early platyspondyly and squaring of vertebral bodies at a later age. Exome sequencing revealed a homozygous pathogenic donor splice site variant in the DDRGK1 gene (NM_023935.3:c.408+1G > A). This mutation was also previously identified in patients from Iraqi descent. Our study expands the phenotypic spectrum of SEMDSH, emphasizes the radiological changes with age in SEMDSH patients, and recommends prolonged follow-up for these cases better to delineate the phenotype and surveillance for possible complications.


Assuntos
Nanismo , Osteocondrodisplasias , Gravidez , Animais , Feminino , Humanos , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Fenótipo , Sequenciamento do Exoma
17.
Brain ; 145(9): 3095-3107, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35718349

RESUMO

The hereditary spastic paraplegias (HSP) are among the most genetically diverse of all Mendelian disorders. They comprise a large group of neurodegenerative diseases that may be divided into 'pure HSP' in forms of the disease primarily entailing progressive lower-limb weakness and spasticity, and 'complex HSP' when these features are accompanied by other neurological (or non-neurological) clinical signs. Here, we identified biallelic variants in the transmembrane protein 63C (TMEM63C) gene, encoding a predicted osmosensitive calcium-permeable cation channel, in individuals with hereditary spastic paraplegias associated with mild intellectual disability in some, but not all cases. Biochemical and microscopy analyses revealed that TMEM63C is an endoplasmic reticulum-localized protein, which is particularly enriched at mitochondria-endoplasmic reticulum contact sites. Functional in cellula studies indicate a role for TMEM63C in regulating both endoplasmic reticulum and mitochondrial morphologies. Together, these findings identify autosomal recessive TMEM63C variants as a cause of pure and complex HSP and add to the growing evidence of a fundamental pathomolecular role of perturbed mitochondrial-endoplasmic reticulum dynamics in motor neurone degenerative diseases.


Assuntos
Canais de Cálcio , Mitocôndrias , Paraplegia Espástica Hereditária , Canais de Cálcio/genética , Retículo Endoplasmático/genética , Humanos , Mitocôndrias/patologia , Mutação , Paraplegia Espástica Hereditária/genética
18.
Front Genet ; 13: 886182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669187

RESUMO

Familial hypertriglyceridemia (F-HTG) is an autosomal disorder that causes severe elevation of serum triglyceride levels. It is caused by genetic alterations in LPL, APOC2, APOA5, LMF1, and GPIHBP1 genes. The mutation spectrum of F-HTG in Arabic populations is limited. Here, we report the genetic spectrum of six families of F-HTG of Arab ancestry in Oman. Methods: six Omani families affected with triglyceride levels >11.2 mmol/L were included in this study. Ampli-Seq sequencing of the selected gene panels was performed. Whole-exome sequencing and copy number variant analysis were also performed in cases with negative exome results. Three novel pathogenic missense variants in the LPL gene were identified, p.M328T, p.H229L, and p.S286G, along with a novel splice variant c.1322+15T > G. The LPL p.H229L variant existed in double heterozygous mutation with the APOA5 gene p.V153M variant. One family had a homozygous mutation in the LMF1 gene (c.G107A; p.G36D) and a heterozygous mutation in the LPL gene (c.G106A; p.D36N). All affected subjects did not have a serum deficiency of LPL protein. Genetic analysis in one family did not show any pathogenic variants even after whole-exome sequencing. These novel LPL and APOA5 mutations are not reported in other ethnic groups. This suggests that patients with F-HTG in Oman have a founder effect and are genetically unique. This warrants further analysis of patients of F-HTG in the Middle East for preventative and counseling purposes to limit the spread of the disease in a population of high consanguinity.

19.
Clin Immunol ; 241: 109067, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750252

RESUMO

BACKGROUND: Severe combined immunodeficiency (SCID) is characterized by severe, early-onset infection in infants. B-cell lymphoma/leukemia (BCL) 10 defects causing SCID have been reported previously in two patients. MATERIAL & METHODS: A seven-month-old female infant was admitted with bilateral pneumonia requiring ventilatory support. She had a history of recurrent infections starting from four months of age. The patient was investigated for primary immunodeficiency. RESULTS: Immunological investigations revealed hypogammaglobulinemia with normal CD4 and CD8 lymphocyte counts, while a lymphocyte proliferation assay showed absent response to phytohemagglutinin stimulation, thereby establishing the diagnosis of an atypical form of SCID. Genetic testing revealed a homozygous mutation in the BCL10 gene, with both parents demonstrating a heterozygous state (NM_003921.5:c.271A > C:p.[Thr91Pro]). The patient died before bone marrow transplantation due to severe disseminated adenovirus disease. CONCLUSION: We report the first patient from the Middle East with a novel homozygous mutation in the BCL10 gene causing SCID.


Assuntos
Imunodeficiência Combinada Severa , Proteína 10 de Linfoma CCL de Células B/genética , Feminino , Testes Genéticos , Homozigoto , Humanos , Lactente , Mutação , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia
20.
Am J Med Genet A ; 188(8): 2485-2490, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567578

RESUMO

Alazami syndrome (AS) is an autosomal recessive condition characterized by the cardinal features of severe growth restriction, moderate to severe intellectual disability, and distinctive facial features. Biallelic pathogenic variants of the LARP7, encoding a chaperone of 7SK noncoding RNA, is implicated in this disease. There are <35 reported cases in the literature. All reported cases share the same three cardinal features of the syndrome. Herein, we report on 12 patients with a confirmed diagnosis of AS from eight unrelated families. The cohort shares the same key feature of the syndrome. Moreover, we report additional phenotypic features, including genito-renal anomalies, ophthalmological abnormalities, and congenital heart disease. Whole-exome sequencing was used in all reported cases, implicating a clinical under-recognition of the syndrome. This report further expands the clinical and molecular characteristics of Alazami syndrome.


Assuntos
Nanismo , Deficiência Intelectual , Microcefalia , Nanismo/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Microcefalia/genética , Mutação , Fenótipo , RNA Nuclear Pequeno , Ribonucleoproteínas/genética , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...