Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760931

RESUMO

Gold nanoparticles (AuNPs) are one of the most stable nanoparticles that have been prevalently used as examples for biological and biomedical applications. Herein, we evaluate the effect of AuNPs on the biological processes of dental pulp stem cells derived from exfoliated deciduous teeth (SHED). Two different shapes of PEGylated AuNPs, rods (AuNR-PEG) and spheres (AuNS-PEG), were prepared and characterized. SHED cells were treated with different concentrations of AuNR-PEG and AuNS-PEG to determine their effect on the stemness profile of stem cells (SCs), proliferation, cytotoxicity, cellular uptake, and reactive oxygen species (ROS), for cells cultured in media containing-fetal bovine serum (FBS) and serum-free media (SFM). Our results showed that both nanoparticle shapes maintained the expression profile of MSC surface markers. Moreover, AuNS-PEG showed a stimulatory effect on the proliferation rate and lower toxicity on SHED, compared to AuNR-PEG. Higher concentrations of 0.5-0.125 nM of AuNR-PEG have been demonstrated to cause more toxicity in cells. Additionally, cells treated with AuNPs and cultured in FBS showed a higher proliferative rate and lower toxicity when compared to the SFM. For cellular uptake, both AuNS-PEG and AuNR-PEG were uptaken by treated cells efficiently. However, cells cultured in SFM media showed a higher percentage of cellular uptake. For ROS, AuNR-PEG showed a significant reduction in ROS at lower concentrations (<0.03 nM), while AuNS-PEG did not show any significant difference compared to the control untreated cells. Thus, our results give evidence about the optimum concentration and shape of AuNPs that can be used for the differentiation of stem cells into specific cell lineages in tissue engineering and regenerative medicine.

2.
Biomed Res Int ; 2022: 2656784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093401

RESUMO

Background: Pulp tissue affected by deep caries and trauma can be protected by vital pulp therapies in which pulp regeneration success depends on the degree of pulp inflammation and the presence of regenerative signals. Reparative dentinogenesis requires dental pulp stem cell (DPSC) activity which can be stimulated by many bioactive molecules to repair the dentine, mediating a balance between the inflammatory response and the reparative events. Therefore, this study was performed in order to investigate the immune-inflammatory effect of Biodentine capping material on DPSCs and macrophages. Method: THP-1, a human monocytic cell line, was differentiated to macrophages, and flow cytometry was used to analyze the expressions of specific macrophage markers. LPS-mediated infection was created for macrophages and DPSCs followed by treatment with Biodentine. CBA array was used to investigate the cytokine secretion followed by qPCR. Migration potential of treated DPSCs was also determined. Results: Our results showed that THP-1 cell line was successfully differentiated into macrophages as shown by surface marker expression. CBA array and qPCR results showed that Biodentine-treated DPSCs and macrophages upregulated anti-inflammatory cytokines and downregulated proinflammatory cytokines. Also, Biodentine enhances the migration potential of treated DPSCs. Conclusion: Biodentine capping material mediated the polarization of M1 to M2 macrophages suggestive of tissue repair properties of macrophages and enhanced the anti-inflammatory cytokines of DPSCs responsible for dentine-pulp regeneration.


Assuntos
Polpa Dentária , Regeneração , Citocinas , Humanos , Células-Tronco , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA