Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Endod J ; 54(6): 941-950, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33503274

RESUMO

AIM: To investigate the ability of dead odontoblasts to initiate NLRP3 inflammasome-dependent sterile inflammation and to explore the effect on dental pulp cell (DPCs) migration, proliferation and odontogenic differentiation. METHODS: Odontoblast-like cells were subjected to freezing-thawing cycles to produce odontoblast necrotic cell lysate (ONCL). DPCs were treated with ONCL to assess proliferation and migration. THP-1 differentiated macrophages stimulated with ONCL and live cell imaging and western blotting were used to assess NLRP3 inflammasome activation. Cytokines were measured with multiplex arrays and ELISA. qPCR, alkaline phosphatase and Alizarin red assays were used to assess odontogenic differentiation of DPCs. Data were analysed using the t-test or anova followed by a Bonferroni post hoc test with the level of significance set at P ≤ 0.05. RESULTS: ONCL induced migration and proliferation of DPCs. Treatment of THP-1 macrophages with ONCL resulted in the release of the inflammatory cytokines IL-1ß, IL-6, IL-8, TNFα, IFN-γ, CCL2 and angiogenic growth factors, angiogenin and angiopoietin. This inflammatory response was associated with activation of NFκB, p38MAPK and NLRP3 inflammasome. To confirm that ONCL induced inflammatory response is NLRP3 inflammasome-dependent, treatment with a caspase-1 inhibitor and a specific NLRP3 inhibitor significantly reduced IL-1ß release in THP-1 macrophages (P = 0.01 and 0.001). Inflammasome activation product, IL-1ß, induced odontogenic differentiation of DPCS as evident by the increase in odontogenic genes expression DMP-1, RUNX-2, DSPP and SPP, alkaline phosphatase activity and mineralization. CONCLUSION: Dead odontoblasts induced NLRP3 inflammasome-dependent sterile inflammation and activated the migration, proliferation and differentiation of DPCs.


Assuntos
Inflamassomos , Odontoblastos , Morte Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Polpa Dentária , Humanos , Inflamação , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR
2.
Int Endod J ; 53(6): 834-845, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32053214

RESUMO

AIM: To use connectivity mapping, a bioinformatics approach, to identify compounds that could induce odontogenic differentiation of dental pulp cells (DPCs) and to experimentally validate this effect. A subsidiary aim was to investigate the anti-inflammatory effect of any identified compound. METHODOLOGY: The Gene Expression Omnibus (GEO) database was searched for microarray data sets assessing odontogenic differentiation of human DPCs. An odontogenic gene expression signature was generated by differential expression analysis. The statistical significant connectivity map (ssCMap) method was used to identify compounds with a highly correlating gene expression pattern. DPCs were treated with the compound identified, and osteo/odontogenic differentiation was assessed by Alizarin red staining, alkaline phosphatase activity and expression of osteo/odontogenic genes ALPL, RUNX2, COL1A1, DSPP, DMP1 and SPP1 by RT-PCR. The anti-inflammatory effect of the compound was assessed using an ex vivo pulpitis model, and cytokine levels were measured with multiplex assay. Means were compared using the t-test or ANOVA followed by a Bonferroni post hoc test with the level of significance set at P ≤ 0.05. RESULTS: The GEO database search identified a specific gene expression signature for osteo/odontogenic differentiation. Analysis using ssCMap found that acetylsalicylic acid [(ASA)/aspirin] was the drug with the strongest correlation with that gene signature. The treatment of DPCs with 0.05 mmol L-1 ASA showed increased alkaline phosphatase activity (P < 0.001), mineralization (P < 0.05), and increased the expression of the osteo/odontogenic genes, DMP1 and DSPP (P < 0.05). Low concentration (0.05 mmol L-1 ) ASA reduced inflammatory cytokines IL-6 (P < 0.001), CCL21 (P < 0.05) and MMP-9 (P < 0.05) in an ex vivo pulpitis model. CONCLUSIONS: Connectivity mapping, a web-based informatics method, was successfully used to identify aspirin as a candidate drug that could modulate the differentiation of DPCs. Aspirin was shown to induce odontogenic differentiation in DPCs in vitro and this, together with its anti-inflammatory effects, makes it a potential candidate for vital pulp therapies.


Assuntos
Aspirina , Polpa Dentária , Fosfatase Alcalina , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Odontogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...