Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(4): 4337-4343, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743000

RESUMO

Hydrogen production technologies are attracting widespread interest in energy technologies. The conventional methods for hydrogen production suffer from high cost, restricting their production everywhere. Here, we use waste formation water from a petroleum field and carbon steel materials to produce hydrogen. The most suitable conditions have been investigated to maximize the hydrogen yield. In addition, an ionic liquid (i.e., tributylmethylammonium methyl carbonate, BMAMC) has been used to control the hydrogen generation reaction. We reveal that the amount of hydrogen release rapidly increases with decreasing pH of the solution from 6.7 to 2.5. A further increase in temperature resulted in more amount of hydrogen release. Our study investigates the influence of chloride ions on hydrogen generation activity. The results revealed that ionic liquid BMAMC remarkably decreases the amount of hydrogen release with an efficiency of 92% at 5.08 × 10-4 M. The addition of ionic liquid BMAMC into waste formation water increases the activation energy of the hydrogen generation reaction. The Langmuir model is the best isotherm describing the adsorption of BMAMC on carbon steel. Finally, to confirm the adsorption of the ionic liquid BMAMC, scanning electron microscopy and Fourier-transform infrared spectroscopy analysis were conducted.

2.
ACS Omega ; 6(40): 26640-26645, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661017

RESUMO

A promising potential device for storage of large amounts of energy is Mg-air batteries. However, the corrosion of the Mg electrode inside the battery electrolyte limits the battery's capacity to store energy. We present a new strategy to protect the Mg electrode from corrosion and increase the life cycle of Mg batteries in this article. The Mg electrode is coated with a conductive nanocomposite (PANI@3D-FCNT) in this technique. To better understand the anticorrosion properties of PANI@3D-FCNTs and their effect on the battery efficiency, electrochemical and battery tests are used. We discovered that PANI@3D-FCNT plays the most promising role in reducing Mg electrode corrosion in 3.5 wt % NaCl electrolyte, with an efficiency of 93.9%. The battery with the coated Mg electrode has a longer discharge time and a slower drop in operating voltage. The PANI@3D-FCNT nanocomposite will prolong the life of the Mg-air battery and keep the Mg electrode active for a long time. This work outstandingly provides an effective strategy to address the defects in the Mg-air batteries arising from electrode corrosion successfully. The work is a great way to open up new avenues for introducing new conductive nanocomposites in metal-air battery designs without using traditional methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...