Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(8): 7738-7748, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873014

RESUMO

A novel organic-inorganic hybrid non-centrosymmetric superconductor material [2-ethylpiperazine tetrachlorocuprate(II)] has been synthesized and investigated by means of Fourier transform infrared spectroscopy, single-crystal X-ray crystallography, thermal analyses, and density functional theory (DFT) studies. The single-crystal X-ray analysis indicates that the studied compound crystallizes in the P212121 orthorhombic space group. Hirshfeld surface analyses have been used to investigate non-covalent interactions. Organic cations [C6H16N2]2+ and inorganic moieties [CuCl4]2- alternatively connect N-H···Cl and C-H···Cl hydrogen bonds. In addition, the energies of the frontier orbitals, highest occupied molecular orbital, lowest unoccupied molecular orbital, the reduced density gradient analyses and quantum theory of atoms in molecules analyses, and the natural bonding orbital are also studied. Furthermore, the optical absorption and photoluminescence properties were also explored. However, time-dependent/DFT computations were utilized to examine the photoluminescence and UV-vis absorption characteristics. Two different methods, 2, 2-diphenyl-1-picryhydrazyl radical and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical scavenging, were used to evaluate the antioxidant activity of the studied material. Furthermore, the title material was docked to the SARS-CoV-2 variant (B.1.1.529) in silico to study the non-covalent interaction of the cuprate(II) complex with active amino acids in the spike protein.

2.
RSC Adv ; 13(13): 8594-8605, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936831

RESUMO

This research reports a robust method for developing advanced flexible and moldable X-ray shielding bandages by harnessing an in situ synthesized polygonal cerium oxide nanoparticles/MWCNTs nanocomposite. The developed advanced hybrid nanocomposite was thoroughly blended with silicone rubber, namely polydimethylsiloxane (PDMS) to form an advanced hybrid gel which was then coated on a conventional cotton bandage to develop an advanced flexible, moldable X-ray shielding bandage. The combined effects were analyzed to determine their unique X-ray reduction properties and were very effective. The linear attenuation value of the developed bandage (untreated cotton bandage coated with CeO2/MWCNT/PDMS), varied from 1.274 m-1 to 0.549 m-1 and the mass attenuation values from 0.823 m2 kg-1 to 0.354 m2 kg-1 for kVp 40 to 100 respectively. The improved features of high density and efficiency of protection are because of the binary protective effect of CeO2 nanoparticles and MWCNT. The morphological features of the developed material were characterized using various techniques such as TEM, SEM, XRD, and EDXA. The developed bandage is an entirely lead-free product, thin and light, has high shielding performance, flexibility, durability, good mechanical strength, doesn't crack easily (no crack), and can be washed in water. It may therefore be useful in various fields, including diagnostic radiology, cardiology, urology, and neurology treatments, attenuating emergency radiation leakages in CT scanner rooms or via medical equipment, and safeguarding complex shielding machinery in public areas.

3.
Dalton Trans ; 51(19): 7420-7435, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35506589

RESUMO

Four series of lanthanide-based coordination polymers (LnCPs), namely [Ln(Br4bdc)1.5(MeOH)3] (1Ln; Ln = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy), [Ln2(Br4bdc)2(NO3)2(MeOH)4] (2Ln; Ln = Ce, Pr, Nd, Sm), [Ln(Br4bdc)(NO3)(MeOH)] (3Ln; Ln = Gd, Tb, Dy), and [Ln2(Br4bdc)3(H2O)2.3(MeOH)2.7] (4Ln; Ln = Gd, Tb, Dy) have been synthesized by reacting hydrated lanthanide(III) salts with tetrabromobenzene-1,4-dicarboxylic acid (H2Br4bdc) in different solvents under solvothermal conditions. The structural diversity found in the system mainly resulted from the effects of anions, solvents, and the variation in the ionic radii of the lanthanide(III) ions. Compounds in series 1Ln feature a two-dimensional (2D) layered structure with sql topology based on {(Ln(COO)2)2(µ-COO)2} secondary building units (SBUs). Compounds in series 2Ln and 3Ln comprise, respectively, infinite uniform and alternate chains of {Ln(COO)2}n SBUs that are assembled into a similar network topology to 1Ln. Meanwhile, compounds in series 4Ln feature 3D coordination networks of a pcu α-Po topological net consisting of binuclear {Ln2(COO)3} SBUs. The formation of polymeric networks in series 1Ln-4Ln is facilitated by the numerous coordination sites of the ligand Br4bdc2- and the fact that its bromine atoms can participate in the formation of various types of intermolecular interactions. The solid-state photoluminescence studies on Eu- (1Eu) and Tb- (1Tb, 3Tb, 4Tb) containing compounds indicate that the Br4bdc2- ligands can efficiently sensitize Eu3+ and Tb3+ emission. Notably, such compounds exhibit highly sensitive fluorescence sensing for acetone, water, and Fe3+ ions via the fluorescence quenching effect. As the representatives of the series, activated 1Eu, 2Pr, 3Tb, and 4Tb show the maximum CO2 uptake capacities of 170.4, 273.7, 255.3, and 303.5 cm3 g-1, respectively, at 50 bar and 298 K with good repeatability of the adsorption-desorption properties. Magnetic studies indicate that the Gd- and Dy-based compounds 1Gd, 1Dy, 3Gd, 3Dy, and 4Gd show simple paramagnetic behaviours, whereas compound 4Dy exhibits weak ferromagnetic interactions.

4.
J King Saud Univ Sci ; 34(5): 102086, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35582633

RESUMO

A compound that could inhibit multiple targets associated with SARS-CoV-2 infection would prove to be a drug of choice against the virus. Human receptor-ACE2, receptor binding domain (RBD) of SARS-CoV-2 S-protein, Papain-like protein of SARS-CoV-2 (PLpro), reverse transcriptase of SARS-CoV-2 (RdRp) were chosen for in silico study. A set of previously synthesized compounds (1-5) were docked into the active sites of the targets. Based on the docking score, ligand efficiency, binding free energy, and dissociation constants for a definite conformational position of the ligand, inhibitory potentials of the compounds were measured. The stability of the protein-ligand (P-L) complex was validated in silico by using molecular dynamics simulations using the YASARA suit. Moreover, the pharmacokinetic properties, FMO and NBO analysis were performed for ranking the potentiality of the compounds as drug. The geometry optimizations and electronic structures were investigated using DFT. As per the study, compound-5 has the best binding affinity against all four targets. Moreover, compounds 1, 3 and 5 are less toxic and can be considered for oral consumption.

5.
Polymers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267737

RESUMO

In the current study we prepared cost-effective adsorbents based on ajwa date pits to remove Cu(II) ions from aqueous medium. Adsorbents were studied using scanning electron microscopy (SEM), FT-IR, and Brunauer-Emmett-Teller (BET) methods to characterize the surface functionalities, morphology, pore size, and particle size. The concentration of Cu(II) ions in the studied samples was determined by atomic adsorption spectrometry technique (AAS). Adsorption method was performed sequentially in a batch system followed by optimization by studying the numerous conditions, for instance the initial amounts of Cu(II) ions, dosages of the adsorbent, contact time, and pH of the solution. The ideal pH observed for maximum adsorption capacity was ~6.5. Langmuir and Freundlich isotherm models correctly predicted the investigation results, with the maximum monolayer adsorption capacities for Cu(II) ions at 328 K being 1428.57 mg/g (treated ajwa date pits, TADP) and 1111.1 mg/g for as produced ajwa date pits (ADP). It was revealed that TADP possess greater adsorption capability than ADP. Recovery investigations revealed that the saturated adsorbents eluted the maximum metal with 0.1 M HCl. Cu(II) ions adsorption was observed to be reduced by 80-89% after the second regeneration cycle. For the raw and chemically processed ajwa date pits adsorbent, the Langmuir model performed significantly better than the Freundlich model. The results demonstrated that the adsorbent made from ajwa date pits could be an economical and environmentally friendly alternative for removing Cu(II) ion pollutant from aqueous media.

6.
J King Saud Univ Sci ; 33(8): 101637, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34642560

RESUMO

Density Functional Theory (DFT) and Quantitative Structure-Activity Relationship (QSAR) studies were performed on four benzimidazoles (compounds 1-4) and two benzothiazoles (compounds 5 and 6), previously synthesized by our group. The compounds were also investigated for their binding affinity and interactions with the SARS-CoV-2 Mpro (PDB ID: 6LU7) and the human angiotensin-converting enzyme 2 (ACE2) receptor (PDB ID: 6 M18) using a molecular docking approach. Compounds 1, 2, and 3 were found to bind with equal affinity to both targets. Compound 1 showed the highest predictive docking scores, and was further subjected to molecular dynamics (MD) simulation to explain protein stability, ligand properties, and protein-ligand interactions. All compounds were assessed for their structural, physico-chemical, pharmacokinetic, and toxicological properties. Our results suggest that the investigated compounds are potential new drug leads to target SARS-CoV-2.

7.
Molecules ; 26(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207072

RESUMO

The aim of the research was to prepare low-cost adsorbents, including raw date pits and chemically treated date pits, and to apply these materials to investigate the adsorption behavior of Cr(III) and Cd(II) ions from wastewater. The prepared materials were characterized using SEM, FT-IR and BET surface analysis techniques for investigating the surface morphology, particle size, pore size and surface functionalities of the materials. A series of adsorption processes was conducted in a batch system and optimized by investigating various parameters such as solution pH, contact time, initial metal concentrations and adsorbent dosage. The optimum pH for achieving maximum adsorption capacity was found to be approximately 7.8. The determination of metal ions was conducted using atomic adsorption spectrometry. The experimental results were fitted using isotherm Langmuir and Freundlich equations, and maximum monolayer adsorption capacities for Cr(III) and Cd(II) at 323 K were 1428.5 and 1302.0 mg/g (treated majdool date pits adsorbent) and 1228.5 and 1182.0 mg/g (treated sagai date pits adsorbent), respectively. It was found that the adsorption capacity of H2O2-treated date pits was higher than that of untreated DP. Recovery studies showed maximal metal elution with 0.1 M HCl for all the adsorbents. An 83.3-88.2% and 81.8-86.8% drop in Cr(III) and Cd(II) adsorption, respectively, were found after the five regeneration cycles. The results showed that the Langmuir model gave slightly better results than the Freundlich model for the untreated and treated date pits. Hence, the results demonstrated that the prepared materials could be a low-cost and eco-friendly choice for the remediation of Cr(III) and Cd(II) contaminants from an aqueous solution.


Assuntos
Cádmio/química , Cromo/química , Metais Pesados/química , Phoeniceae/química , Sementes/química , Água/química , Adsorção , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Íons/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
8.
J Oleo Sci ; 70(3): 321-332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33658465

RESUMO

Oils play a key role as raw materials in a variety of industries. The aim of this study was to evaluate the potential of Datura innoxia seed oil cultivated in Saudi Arabia for industrial purpose and to study the effects of hexane, chloroform, and isopropanol as extraction solvents on the compositions of the extracts. The results showed that the hexane and chloroform extracts were mainly neutral oils which were rich in linoleic (≈46%) and oleic (≈31%) acids. However, the isopropanol extract contained large amount of neutral oil and organic acids. Neutral oil contained mainly palmitic acid (40.2%) and some important and valuable epoxy (15.4%) and cyclopropane (13.2%) fatty acids. Analysis of the sterol and tocopherol levels of the crude and purified oil extracted revealed that they were significantly affected by the extraction solvent used.


Assuntos
Datura/química , Ácidos Graxos/análise , Extração Líquido-Líquido/métodos , Extratos Vegetais/química , Óleos de Plantas/química , Sementes/química , Solventes , 2-Propanol , Clorofórmio , Hexanos , Fitosteróis/análise , Extratos Vegetais/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Arábia Saudita , Tocoferóis/análise
9.
Molecules ; 26(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562489

RESUMO

2,4-Dinitrophynylhydrazine and two thiocyanate ions in a (M:L1:L2) 1:2:2 molar ratio was synthesized in the complexes of Co(II) and Ni(II). The prepared compounds were identified through a C.H.N.S. analysis, conductivity measurements, powder X-ray diffraction (PXRD), the infrared spectrum, and a UV-visible spectrum analysis, in addition to the magnetic properties being measured. The measurements of the molar conductance implieda nonelectrolytic nature of compounds Co(II) and Ni(II). The magnetic susceptibility, as well as electronic spectra, represented all the metal complexesthroughoctahedral geometry, respectively. The PXRD patterns suggested that all the complexes were an orthorhombic system with unit cell parameters. The in-vitro biological activity of the ligand and the metal complexes were screened against the Gram-positive and negative pathogenic bacteria Staphylococcus aureus, Bacillus subtilis, Pseudomonas, aeruginosa and Escherichia coli, as well as the fungal species of Aspergillusniger and Candida albicans.Thus, the metal complexes showeda high efficiency of antimicrobial activity compared with the ligand. Furthermore, applications of the ligand, as well as the metal complexes, were tested for in-vitro antioxidant potential in aDPPH assay. The results showed that the activity of the metal complexes with the in-vitro antioxidant was more active than that of 2,4-dinitrophenylhydrazine(DNPH).


Assuntos
Cobalto/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Níquel/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Técnicas de Química Sintética , Complexos de Coordenação/química , Ligantes , Picratos/química
10.
J King Saud Univ Sci ; 33(2): 101315, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33390681

RESUMO

In this study, we examined five previously synthesized compounds and checked their binding affinity towards the SARS-CoV-2 main protease (Mpro) by molecular docking study, and compared the data with three FDA approved drugs, i.e., Remdesivir, Ivermectine and Hydroxychlorochine. In addition, we have investigated the docking study against the main protease of SARS-CoV-2 (Mpro) by using Autodock 4.2 software package. The results suggested that the investigated compounds have property to bind the active position of the protein as reported in approved drugs. Hence, further experimental studies are required. The formation of intermolecular interactions, negative values of scoring functions, free binding energy and the calculated binding constants confirmed that the studied compounds have significant affinity for the specified biotarget. These studied compounds were passed the drug-likeness criteria as suggested by calculating ADME data by SwissADME server. Moreover, the ADMET properties suggested that the investigated compounds to be orally active compounds in human. Furthermore, density functional computations (DFT) were executed by applying GAUSSIAN 09 suit program. In addition, Quantitative Structure-Activity Relationship (QSAR) was studied by applying HyperChem Professional 8.0.3 program.

11.
Dalton Trans ; 49(47): 17243-17251, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33200158

RESUMO

A new dinuclear uranyl salen coordination compound, [(UO2)2(L)2]·2MeCN [L = 6,6'-((1E,1'E)-((2,2-dimethylpropane-1,3-diyl)bis(azaneylylidene))-bis(methaneylylidene))bis(2-methoxyphenol)], was synthesized using a multifunctional salen ligand to harvest visible light for the selective photocatalytic reduction of CO2 to MeOH. The assembling of the two U centers into one coordination moiety via a chelating-bridging doubly deprotonated tetradentate ligand allowed the formation of U centers with distorted pentagonal bipyramid geometry. Such construction of compounds leads to excellent activity for the photocatalytic reduction of CO2, permitting a production rate of 1.29 mmol g-1 h-1 of MeOH with an apparent quantum yield of 18%. Triethanolamine (TEOA) was used as a sacrificial electron donor to carry out the photocatalytic reduction of CO2. The selective methanol formation was purely a photocatalytic phenomenon and confirmed using isotopically labeled 13CO2 and product analysis by 13C-NMR spectroscopy. The spectroscopic studies also confirmed the interaction of CO2 with the molecule of the title complex. The results of these efforts made it possible to understand the reaction mechanism using ESI-mass spectrometry.

12.
ACS Omega ; 5(42): 27227-27234, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33134684

RESUMO

A novel Schiff base compound derived from the condensation of 2-hydroxy-1-naphthaldehyde with (1S,2S)-(-)-1,2-diphenylethylenediamine in 2:1 M ratio was reported and investigated by elemental analyses, Fourier transform infrared and NMR spectroscopic studies, and single-crystal X-ray crystallography. Hirshfeld surface analyses were also carried out to measure the various intermolecular contacts controlling the supramolecular topology, suggesting the H···O (7.6%) contacts to be the most significant interactions, whereas the H···H (48.9%) and C···H (40.2%) interactions are less-significant. The data obtained from the energy calculations revealed the structure observed experimentally to be the most stable isomer and its energy being lower by 18.0441 kcal/mol than the less stable one. Density functional theory calculations were also carried out to analyze the natural charges, reactivity descriptors, and different intramolecular charge transfer interactions. The in vitro anticancer activity of the compound was evaluated by MTT assays against human colorectal cancer cells, HT-29 and SW620. The results showed that the compound has potential anticancer activity against these cells lines.

13.
J Oleo Sci ; 69(5): 413-421, 2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32281562

RESUMO

Allium ampeloprasum L., commonly known as wild leek, is an edible vegetable that has been cultivated for centuries. However, no detailed studies have been undertaken to valorize A. ampeloprasum seed oil. This study aims to evaluate the physicochemical properties, chemical composition, and antioxidant activity of A. ampeloprasum seed oil. The seed oil content was found to be 18.20%. Gas chromatographymass spectrometry (GC-MS) showed that linoleic acid (71.65%) was the dominant acid, followed by oleic acid (14.11%) and palmitic acid (7.11%). A. ampeloprasum seed oil exhibited an oxidative stability of 5.22 h. Moreover, γ- and δ-tocotrienols were the major tocols present (79.56 and 52.08 mg/100 g oil, respectively). The total flavonoid content (16.64 µg CE /g oil) and total phenolic content (62.96 µg GAE /g oil) of the seed oil were also determined. The antioxidant capacity of the oil, as evaluated using the ABTS assay (136.30 µM TEAC/g oil), was found to be significant. These findings indicate that A. ampeloprasum seeds can be regarded as a new source of edible oil having health benefits and nutritional properties.


Assuntos
Antioxidantes/análise , Sementes/química , Cebolinha Branca/química , Fenômenos Químicos , Flavonoides/análise , Cromatografia Gasosa-Espectrometria de Massas , Ácido Linoleico/análise , Ácido Oleico/análise , Ácido Palmítico/análise , Fenóis/análise , Tocotrienóis/análise
14.
J Oleo Sci ; 68(11): 1041-1049, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695014

RESUMO

An optimal ratio of omega-6 to omega-3 (ω-6/ω-3) polyunsaturated fatty acids (PUFA) in the diet prevents the pathogenesis of many inflammatory diseases. This study aimed to synthesize and characterize ternary oil blends with optimal ω-6/ω-3 ratios using olive (OL), sunflower (SU), and cress (CR) oils. The oxidative stability, thermal profile, fatty acid (FA) and tocopherol compositions, and the physicochemical properties of the blends were used to determine their quality. Oil mixtures were prepared with 2, 3, 4, and 5 ω-6/ω-3 ratios. FA composition and tocopherol content were the most important factors affecting the oxidation and thermal stabilities of the oils. All oil mixtures showed good quality indices. Thus, synthetized oil blends with high oxidative stability, high antioxidant content, optimal ω-6/ω-3 ratios, and recommended FA compositions can influence human health. The composition of healthy oil blends with optimal ω-6/ω-3 ratios was expressed mathematically and depicted graphically in a ternary diagram.


Assuntos
Gorduras Insaturadas na Dieta/análise , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-6/análise , Qualidade dos Alimentos , Óleos de Plantas/química , Antioxidantes/análise , Brassicaceae/química , Fenômenos Químicos , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-6/química , Azeite de Oliva/química , Oxirredução , Óleo de Girassol/química , Temperatura , Tocoferóis/análise
15.
Molecules ; 23(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614828

RESUMO

We are reporting a novel azo-azomethine ligand, HL and its complexes with Cu(II) and Fe(III) ions. The ligand and its complexes are characterized by various physico-chemical techniques using C,H,N analyses, FT-IR, ¹H-NMR, ESI-MS and UV-Vis studies. TGA analyses reveal complexes are sufficiently stable and undergo two-step degradation processes. The redox behavior of the complexes was evaluated by cyclic voltammetry. Furthermore, the ligand and its complexes were tested for antimicrobial activity against bacterial and fungal strains by determining inhibition zone, minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). The complexes showed moderate antimicrobial activity when tested against Gram +ve and Gram -ve bacterial strains. To obtain insights into the structure of ligand, DFT studies are recorded. The results obtained are quite close to the experimental results. In addition, the energy gap, chemical hardness, softness, electronegativity, electrophilic index and chemical potential were calculated using HOMO, LUMO energy value of ligand.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Compostos Azo/síntese química , Compostos Azo/farmacologia , Cobre/química , Compostos Férricos/síntese química , Compostos Férricos/farmacologia , Tiossemicarbazonas/química , Anti-Infecciosos/química , Compostos Azo/química , Compostos Férricos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Ligantes , Testes de Sensibilidade Microbiana
16.
J Food Sci ; 83(3): 624-630, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29377104

RESUMO

This investigation aimed to evaluate the chemical composition and physicochemical properties of seed oils from 6 date palm (Phoenix. dactylifera L.) cultivars (Barhi, Khalas, Manifi, Rezeiz, Sulaj, and Sukkari) growing in Saudi Arabia and to compare them with conventional palm olein. The mean oil content of the seeds was about 7%. Oleic acid (48.67%) was the main fatty acid, followed by lauric acid (17.26%), stearic acid (10.74%), palmitic acid (9.88%), and linolenic acid (8.13%). The mean value for free fatty acids content was 0.5%. The P. dactylifera seed oil also exhibited a mean tocol content of 70.75 mg/100 g. α-Tocotrienol was the most abundant isomer (30.19%), followed by γ-tocopherol (23.61%), γ-tocotrienol (19.07%), and α-tocopherol (17.52%). The oils showed high thermal and oxidative stabilities. The findings indicate that date seed oil has the potential to be used in the food industry as an abundant alternative to palm olein. PRACTICAL APPLICATION: This study showed that date seed had great nutritional value due to which it can be used for food applications especially as frying or cooking oil. In addition, date oil has also potential to be used in cosmetic and pharmaceutical practices as well. The extraction of oil from Phoenix dactylifera seed on large scale can create positive socioeconomic benefits especially for rural communities and could also assist to resolve the environmental issues generated by excess date production in large scale date-producing countries such as Saudi Arabia.


Assuntos
Phoeniceae/química , Óleos de Plantas/química , Ácidos Graxos/química , Ácidos Láuricos/química , Valor Nutritivo , Ácido Oleico/química , Oxirredução , Phoeniceae/classificação , Arábia Saudita , Sementes/química , Ácidos Esteáricos/química , Tocotrienóis/química , gama-Tocoferol/análise
17.
Protein Pept Lett ; 25(2): 164-170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28240158

RESUMO

BACKGROUND: Biodiesel is a green fuel consisting of long chain fatty acid monoalkyl esters, which can be blended with diesel or used alone which is usually produced from vegetable oils/fats by either lipasecatalyzed transesterification. In this investigation, an enzyme (Novozym 435) catalyzed process was optimized to prepare methyl esters from crude Citrullus colocynthis oil (CCO) by transesterification of CCO with methanol. However, as per our knowledge, lipase-catalyzed transesterification have not been used for biodiesel production from Citrullus colocynthis. OBJECTIVE: The purpose of this work was to transesterify the CCO in the presence of Candida antarctica lipase as catalyst and methanol. Additionally, the physicochemical parameters/fuel properties of the Citrullus colocynthis methyl ester (CCME) were assessed and compared. METHODS: Lipase-catalyzed reactions were carried out in three necked flask (50 mL) attached with reflux condenser and thermometer, immersed in oil bath at constant stirring speed (400 rpm). The reaction mixture was consisted of CCO and varying the calculated amount of methanol, tert-butyl alcohol, and Novozym 435. The experimental parameters reaction time, methanol/oil molar ratio, reaction temperature, tert-butanol content, Novozym 435 content and water content were optimized for the transesterification reaction. The CCME yield was measured using gas chromatograph. The fuel properties of the produced CCME were determined as per American Society for Testing and Materials (ASTM) and European (EN) biodiesel standard methods. RESULTS: In this study, an enzymatic catalyst was employed to synthesize the CCME from CCO via transesterification. Several variables affecting the CCME yield were optimized as lipase quantity (4%), water content (0.5%), methanol/oil molar ratio (5:1), reaction temperature (43 °C), reaction medium composition (80% tertbutanol/ oil), and reaction time (3.7 h). A CCME yield of 97.8% was achieved using enzyme catalyzed transesterification of CCO under optimal conditions. The significant biodiesel fuel properties of CCME, i.e. cloud point (0.70 °C); cetane number (49.07); kinematic viscosity (2.27 mm2/s); flash point (143 °C); sulfur content (2 ppm) density (880 kg/m3) and acid value (0.076 mg KOH/g) were appraised. CCME also exhibited long-term storage stability (4.80 h) and all the biodiesel fuel properties were within the range of standards (ASTM D6751 and EN 14214). CONCLUSION: The lipase-catalyzed transesterification produced better conversion than the base-catalyzed reaction. The fuel properties of CCME were within the limits of the ASTM D6751 and EN14214 standards. Furthermore, CCME showed good oxidative stability and a long shelf life due its high natural antioxidant content. CCME showed better fuel properties and long-term storage stability due to which it can be used as a potential alternative fuel.


Assuntos
Biocombustíveis , Citrullus colocynthis/química , Lipase/química , Óleos de Plantas/química , Catálise , Enzimas Imobilizadas , Esterificação , Ésteres/química , Ácidos Graxos/química , Proteínas Fúngicas , Oxirredução
18.
Inorg Chem ; 56(22): 14157-14163, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29091416

RESUMO

The fabrication of metal-organic frameworks with controlled structure and desired properties is important but still a challenge. In this work, a zinc(II) framework, {[Zn3(L)2(DABCO)(H2O)]·9DMF} (named as Zn-1), has been synthesized based on [1,1':3',1″-terphenyl]-4,4″,5'-tricarboxylic acid (H3L) and 1,4-diazabicyclo[2.2.2]octane (DABCO), which is isostructural to the previously reported copper(II) analogue, {[Cu3(L)2(DABCO)(H2O)]·15H2O·9DMF} (named as Cu-1). Interestingly, hybrid zinc(II) and copper(II) bimetallic frameworks have been obtained via metal-ion metathesis and found to show enhanced adsorption and photoluminescence properties. Such a post-metal-ion metathesis method can be used to synthesize new and desired frameworks that could not be obtained by direct synthesis.

19.
Dalton Trans ; 46(40): 13943-13951, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28972233

RESUMO

Four new metal-organic frameworks (MOFs) [Zn(L)(bpdc)]·1.6H2O (1), [Co(L)(bpdc)]·H2O (2), [Ni3(L)2(bptc)2(H2O)10]·2H2O (3) and [Cd2(L)(Hbptc)2] (4) were achieved by reactions of the corresponding metal salt with mixed organic ligands of 1,4-di(1H-imidazol-4-yl)benzene (L) and 4,4'-benzophenonedicarboxylic acid (H2bpdc) or biphenyl-2,4',5-tricarboxylic acid (H3bptc). They exhibit varied structures: MOFs 1 and 4 are porous three-dimensional (3D) frameworks, while 2 is an infinite one-dimensional (1D) chain and 3 is a two-dimensional (2D) network. Remarkably, 1 and 4 can act as potential fluorescent materials for sensing Fe(iii) ions and different ketone molecules with high selectivity and sensitivity. In addition, MOF 1 shows selective adsorption of CO2 over N2.

20.
J Photochem Photobiol B ; 176: 150-156, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29024872

RESUMO

A novel (salicylaldiminato)Pt(II) complex with two different molecular structures, one solventless ((salicylaldiminato)Pt(II)) 1 and another one solvated ((salicylaldiminato)Pt(II). C2H5OH), 1·C2H5OH, has been obtained by the reaction of a salen ligand with [PtCl2(DMSO)2] in ethanol at room temperature. The asymmetric unit of solventless 1 contains 9 such complex molecules whereas 1·C2H5OH contains 2 complex molecules and one ethanol molecule. To get insights into the structure and bonding, DFT and TDFT calculation have been carried out. The electronic transition band at 408.0nm (calc. 424.3nm) is assigned to HOMO→LUMO (96%) excitation. The calculated NMR chemical shifts are interrelated with the experimental results, and a very slight effect of solvent was noticed on NMR chemical shifts. A MTT assay and the real-time cell monitoring xCELLigence system revealed that the 1 has significant potential to suppress cell viability and cell proliferation in human HT-29 and SW620 colorectal cancer cell lines.


Assuntos
Alcenos/química , Antineoplásicos/síntese química , Complexos de Coordenação/síntese química , Platina/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/toxicidade , Cristalografia por Raios X , Etilenodiaminas/química , Células HT29 , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...