Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563586

RESUMO

Alcohol use is a contributor in the premature deaths of approximately 3 million people annually. Among the risk factors for alcohol misuse is circadian rhythm disruption; however, this connection remains poorly understood. Inhibition of the circadian nuclear receptor REV-ERBα is known to disrupt molecular feedback loops integral to daily oscillations, and impact diurnal fluctuations in the expression of proteins required for reward-related neurotransmission. However, the role of REV-ERBα in alcohol and substance use-related phenotypes is unknown. Herein, we used a Rev-erbα knockout mouse line and ethanol two-bottle choice preference testing to show that disruption of Rev-erbα reduces ethanol preference in male and female mice. Rev-erbα null mice showed the lowest ethanol preference in a two-bottle choice test across all genotypes, whereas there were no ethanol preference differences between heterozygotes and wildtypes. In a separate experiment, alcohol-consuming wildtype C57Bl/6N mice were administered the REV-ERBα/ß inhibitor SR8278 (25 mg/kg or 50 mg/kg) for 7 days and alcohol preference was evaluated daily. No differences in alcohol preference were observed between the treatment and vehicle groups. Our data provides evidence that genetic variation in REV-ERBα may contribute to differences in alcohol drinking.


Assuntos
Ritmo Circadiano , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Consumo de Bebidas Alcoólicas/genética , Animais , Ritmo Circadiano/fisiologia , Etanol , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo
2.
Genes (Basel) ; 13(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456507

RESUMO

Shift work is associated with increased alcohol drinking, more so in males than females, and is thought to be a coping mechanism for disrupted sleep cycles. However, little is presently known about the causal influence of circadian rhythm disruptions on sex differences in alcohol consumption. In this study, we disrupted circadian rhythms in female and male mice using both environmental (i.e., shifting diurnal cycles) and genetic (i.e., ClockΔ19/Δ19 mutation) manipulations, and measured changes in alcohol consumption and preference using a two-bottle choice paradigm. Alcohol consumption and preference, as well as food and water consumption, total caloric intake, and weight were assessed in adult female and male ClockΔ19/Δ19 mutant mice or wild-type (WT) litter-mates, housed under a 12-hour:12-hour light:dark (L:D) cycle or a shortened 10-hour:10-hour L:D cycle. Female WT mice (under both light cycles) increased their alcohol consumption and preference over time, a pattern not observed in male WT mice. Compared to WT mice, ClockΔ19/Δ19 mice displayed increased alcohol consumption and preference. Sex differences were not apparent in ClockΔ19/Δ19 mice, with or without shifting diurnal cycles. In conclusion, sex differences in alcohol consumption patterns are evident and increase with prolonged access to alcohol. Disrupting circadian rhythms by mutating the Clock gene greatly increases alcohol consumption and abolishes sex differences present in WT animals.


Assuntos
Proteínas CLOCK , Ritmo Circadiano , Consumo de Bebidas Alcoólicas/genética , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Feminino , Genótipo , Masculino , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...