Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant Dis ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953230

RESUMO

Citrus greening disease was first reported in Saudi Arabia during the 1970's when characteristic foliar and fruit symptoms were observed in commercial citrus groves, however, "Candidatus Liberibacter asiaticus" (CLas) was not detected in symptomatic trees until 1981-1984 when CLas-like cells were observed by transmission electron microscopy in leaves collected from symptomatic citrus groves in southwestern Saudi Arabia. Despite the anticipated establishment of the CLas-Asian citrus psyllid (ACP) (Diaphorina citri Kuwayama) pathosystem, CLas presence has not been verified in suspect trees nor have ACP infestations been documented. Given the recent expansion of citrus production in Saudi Arabia, a systematic country-wide survey was carried out to determine the potential CLas distribution in the thirteen citrus-growing regions of the country. Citrus trees were surveyed for presence of CLas-psyllid vector(s) and characteristic disease symptoms in commercial and urban citrus trees. Adult psyllids collected from infested citrus trees were identified as ACP based on morphological characteristics. Real-time, quantitative PCR amplification (qPCR) of the CLas ß-subunit of the ribonucleotide reductase (RNR) gene from citrus leaf and fruit samples and/or ACP adults, revealed trees were positive for CLas detection in ten of the 13 survey regions, however, CLas was undetectable in ACP adults. Phylogenetic and SNPs analyses of a PCR-amplified, cloned fragment of the CLas 16S rRNA gene (~1.1 kbp) indicated Saudi Arabian isolates were most closely related to Florida, USA isolates. Analysis of climate variables indicated that the distribution of the ACP-CLas pathosystem observed in Saudi Arabia was consistent with published predictions of terrains most likely to support establishment.

2.
Heliyon ; 9(9): e19715, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809984

RESUMO

Huanglongbing (HLB) or citrus greening currently is the most devastating citrus disease worldwide. Unfortunately, no practical cure has been available up to now. This makes the control of HLB as early as possible very important to be conducted. The objective of this study was to investigate the efficacy of the application of salicylic acid (SA) and Phenylacetic acid (PAA) on one-year-old seedlings of different citrus species (Citrus reticulata, C. sinensis, C. aurantifolii) growing on C. volkameriana and C. aurantium by soil drench methods. Factorial analysis of variance showed the percent change in "Candidatus Liberibacter asiaticus" titer and disease severity on a different combination of citrus species growing on the two rootstocks treated with inducers and Oxytetracycline (OTC) were significantly different compared to the untreated plants. SA alone or in combination with OTC provided excellent (P-value < 0.05) control of HLB based on all parameters. The interaction between both factors (Rootstocks x Citrus species) significantly influenced the Ct value (P-value = 0.0001). "Candidatus Liberibacter asiaticus" titer in plants treated with OTC was reduced significantly with a range of -18.75 up to -78.42. Overall, the highest reduction was observed in the application of OTC on sweet orange growing on C. volkameriana (-78.42), while the lowest reduction was observed in the same cultivar which was treated with a combination of SA and OTC (-3.36). Induction of pathogenesis-related (PR) genes, i.e., PR1, PR2, and PR15, biosynthesis of Jasmonic acid and ethylene which are also important pathways to defense activity were also significantly increased in treated plants compared to untreated plants. This study suggests that the application of inducer alone is acceptable for HLB management. We proposed the application of SA and PAA as a soil drench on the citrus seedlings as promising, easy, and environmentally safe for HLB disease control on citrus seedlings.

3.
Plants (Basel) ; 12(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836243

RESUMO

Zucchini yellow mosaic virus (ZYMV) is a severe threat to cucurbit crops worldwide, including Pakistan. This study was pursued to evaluate the prevalence, geographic distribution, and molecular diversity of ZYMV isolates infecting cucurbits in Pakistan's Pothwar region. Almost all the plant viruses act as a biotic stress on the host plants, which results in a yield loss. These viruses cause losses in single-infection or in mixed-infection cucurbit crops, and we have found a number of mixed-infected samples belonging to the Curubitaceae family. Serological detection of the tested potyviruses in the collected cucurbit samples revealed that ZYMV was the most prevalent virus, with a disease incidence (DI) at 35.2%, followed by Papaya ringspot virus (PRSV) with an incidence of 2.2%, and Watermelon mosaic virus (WMV) having an incidence as little as 0.5% in 2016. In the year 2017, a relatively higher disease incidence of 39.7%, 2.4%, and 0.3% for ZYMV, WMV, and PRSV, respectively, was recorded. ZYMV was the most prevalent virus with the highest incidence in Attock, Rawalpindi, and Islamabad, while PRSV was observed to be the highest in Islamabad and Jhelum. WMV infection was observed only in Rawalpindi and Chakwal. Newly detected Pakistani ZYMV isolates shared 95.8-97.0% nucleotide identities among themselves and 77.1-97.8% with other isolates retrieved from GenBank. Phylogenetic relationships obtained using different ZYMV isolates retrieved from GenBank and validated by in silico restriction analysis revealed that four Pakistani isolates clustered with other ZYMV isolates in group IIb with Chinese, Italian, Polish, and French isolates, while another isolate (MK848239) formed a separate minor clade within IIb. The isolate MK8482490, reported to infect bitter gourd in Pakistan, shared a minor clade with a Chinese isolate (KX884570). Recombination analysis revealed that the recently found ZYMV isolate (MK848239) is most likely a recombinant of Pakistani (MK848237) and Italian (MK956829) isolates, with a recombinant breakpoint between 266 and 814 nucleotide positions. Local isolate comparison and recombination detection may aid in the development of a breeding program that identifies resistant sources against recombinant isolates because the ZYMV is prevalent in a few cucurbit species grown in the surveyed areas and causes heavy losses and economic damage to the agricultural community.

4.
Plant Dis ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498638

RESUMO

Coffee (Coffea arabica L.) is a promising agricultural commodity in many countries including Saudi Arabia, but crop production is often constrained by diseases. In December 2021, coffee trees had symptoms of anthracnose disease (CAD) were observed in Jazan Province, Saudi Arabia (17°19'00.8"N 43°11'26.8"E), and the incidence was 55%. Affected trees showed dieback and leaves necrosis. On green and ripening berries, slightly sunken and dark brown lesions were occurred; the berries finally become mummified (Fig. S1). For pathogen isolation, symptomatic tissues (4×4mm) of 30 diseased branches and berries samples were surface-sterilized in 1% sodium hypochlorite for 2 min, followed by 70% ethanol for 20 s, rinsed in sterile distilled water and placed on potato dextrose agar (PDA). Cultures were incubated at 26℃ for 8 days in the dark. Eighteen isolates were recovered, and 2 representative single spore isolates (KSU-CgM17, KSU-CsM42) were used for further study. PDA culture of KSU-CgM17 had aerial white mycelium at first and later became gray to grayish black; light salmon to orange conidial masses were observed on the mycelium plate surface as the cultures aged (Fig. S2). Colony produced by KSU-CsM42 was off-white to gray with cottony mycelia and grayish-white on the undersides of the culture after 10 days at 28° (Fig. S2). Conidial shape of these two isolates were both aseptate, cylindrical to nearly straight, hyaline, rounded at both ends. Conidia (n = 50) measurements were 16 to 18.0 µm long × 4.8 to 6.4 µm wide for KSU-CgM17 and 12.6 to 17.5 µm long × 3.2 to 4.5 µm wide for KSU-CsM42. The microscopic and culture features fitted those for Colletotrichum gloeosporioides species complex (Weir et al. 2012). To further identify these isolates, four genomic DNA loci including the partial ITS rDNA region, and CAL, TUB2, and GAPDH genes were amplified and sequenced (Hu et al., 2015). All sequences were deposited into GenBank under accession numbers: OQ791412 & OQ791413 (ITS), OQ786847 & OQ786851 (CAL), OQ786849 & OQ786850 (TUB2), and OQ786848 & OQ786852 (GAPDH) for KSU-CgM17and KSU-CsM42, respectively (Tables S1& S2). A BLAST search of GenBank showed that these pathogens were identified as C. gloeosporioides (KSU-CgM17) and C. siamense (KSU-CsM42). The pathogenicity was tested on detached coffee leaves or green and red berries (Coa et al., 2019). For inoculation, healthy leaves and berries were wounded with a sterilized needle, placed inside petri dishes containing moist filter paper, and then inoculated with a 10-µl droplet of conidial suspension (106 spores/ ml). Sterile distilled water was used as a negative control. Six replicates were tested per isolate and the experiment was repeated once. The inoculated materials were incubated at 25°C and 100% relative humidity for 8 days. Necrotic lesions developed on 100% of the inoculated coffee materials 6 days later, whereas the negative controls were asymptomatic (Fig. S2). Koch's postulates were fulfilled when typical colonies of these species were successfully re-isolated from the from symptomatic tissues. These pathogens were reported previously to affect coffee in Vietnam (Nguyen et al., 2010), China (Cao et al., 2019), and Puerto Rico (Serrato-Diaz et al., 2020). To our knowledge, this is the first record of C. gloeosporioides and C. siamense causing CAD in Saudi Arabia. Further studies on the epidemiology of CAD on arabica coffee plantations as well as effective strategies for managing this disease are needed.

5.
Plants (Basel) ; 11(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432886

RESUMO

During the growing season of 2021-2022, a total of 145 symptomatic tomato leaf and fruit samples were collected from different locations in Riyadh Region, Saudi Arabia, showing a moderate-to-severe mosaic with dark green wrinkling, blistering, narrowing, and deformation with necrosis spot on tomato leaves, while irregular brown necrotic lesions, deformation, and yellowing spots rendering the fruits non-marketable were observed on tomato fruits. These samples were tested serologically against important tomato viruses using enzyme-linked immunosorbent assay (ELISA), and the obtained results showed that 52.4% of symptomatic tomato samples were found positive for Tomato brown rugose fruit virus (ToBRFV), wherein 12 out of 76 samples were singly infected; however, 64 out of 145 had mixed infection. A sample with a single infection of ToBRFV was used for mechanical inoculation into a range of different host plants; symptoms were observed weekly, and the presence of the ToBRFV was confirmed by ELISA and reverse transcription-polymerase chain reaction (RT-PCR). A total RNA was extracted from selected ELISA-positive samples, and RT-PCR was carried out using specific primers F-3666 and R-4718, which amplified a fragment of 1052 bp. RT-PCR products were sequenced in both directions, and partial genome nucleotide sequences were submitted to GenBank under the following accession numbers: MZ130501, MZ130502, and MZ130503. BLAST analysis of Saudi isolates of ToBRFV showed that the sequence shared nucleotide identities (99-99.5%) among them and 99-100% identity with ToBRFV isolates in different countries. A ToBRFV isolate (MZ130503) was selected for mechanical inoculation and to evaluate symptom severity responses of 13 commonly grown tomato cultivars in Saudi Arabia. All of the tomato cultivars showed a wide range of symptoms. The disease severity index of the tested cultivars ranged between 52% and 96%. The importance ToBRFV disease severity and its expanding host range due to its resistance breaking ability was discussed.

6.
PeerJ ; 10: e14281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405014

RESUMO

Background: Begomovirus is one of the most devastating pathogens that can cause more than 90% yield loss in various crop plants. The pathogenicity determinant ßC1, located on the betasatellite associated with monopartite begomoviruses, alters the host signaling mechanism to enhance the viral disease phenotype by undermining the host immunity. The understanding of its interacting proteins in host plants to develop disease symptoms such as curly leaves, enations, vein swelling, and chlorosis is crucial to enhance the disease resistance in crop plants. The current study was designed to reveal the contribution of ßC1 in disease pathogenicity and to unveil potential interacting partners of ßC1 protein in the model plant Nicotiana benthamiana. Methods: The ßC1 gene was cloned in pGKBT7 and used as bait against the cDNA library of N. benthamiana and its pathogenesis was tested against the healthy plant and the plants infiltrated with empty vectors. The yeast two-hybrid-based screening was performed to find the interacting factors. Successful interacting proteins were screened and evaluated in various steps and confirmed by sequence analysis. The three-dimensional structure of the Nuclear Transport Factor 2 (NTF2) protein was predicted, and in-silico protein-protein interaction was evaluated. Furthermore, protein sequence alignment and molecular phylogenetic analysis were carried out to identify its homologues in other related families. In-silico analyses were performed to validate the binding affinity of ßC1 protein with NTF2. The 3D model was predicted by using I-TASSER and then analyzed by SWISS MODEL-Workspace, RAMPAGE, and Verify 3D. The interacting amino acid residues of ßC1 protein with NTF2 were identified by using PyMOL and Chimera. Results: The agroinfiltrated leaf samples developed severe phenotypic symptoms of virus infection. The yeast-two-hybrid study identified the NTF2 as a strong interacting partner of the ßC1. The NTF2 in Solanaceae and Nicotiana was found to be evolved from the Brassica and Gossypium species. The in-silico interaction studies showed a strong binding affinity with releasing energy value of -730.6 KJ/mol, and the involvement of 10 amino acids from the middle portion towards the C-terminus and five amino acid residues from the middle portion of ßC1 to interact with six amino acids of NTF2. The study not only provided an insight into the molecular mechanism of pathogenicity but also put the foundation stone to develop the resistance genotypes for commercial purposes and food security.


Assuntos
Nicotiana , Saccharomyces cerevisiae , Nicotiana/genética , Virulência , Filogenia , Transporte Ativo do Núcleo Celular , Aminoácidos/genética
7.
Microorganisms ; 10(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36296267

RESUMO

In Saudi Arabia (SA), the citrus greening disease is caused by 'Candidatus Liberibacter asiaticus' (CLas) transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. The origin and route(s) of the ACP-CLas pathosystem invasion in SA have not been studied. Adult ACP were collected from citrus trees in SA and differentiated by analysis of the mitochondrial cytochrome oxidase I (mtCOI) and nuclear copper transporting protein (atox1) genes. A phylogenetic analysis of the Wolbachia spp. surface protein (wsp) gene was used to identify the ACP-associated Wolbachia spp. A phylogenetic analysis of the atox1 and mtCOI gene sequences revealed one predominant ACP haplotype most closely related to the Indian subcontinent founder populations. The detection and identification of CLas in citrus trees were carried out by polymerase chain reaction (PCR) amplification and sequencing of the 16S rDNA gene. The CLas-integrated prophage genomes were sequenced, annotated, and used to differentiate CLas populations. The ML and ASTRAL trees reconstructed with prophages type 1 and 2 genome sequences, separately and concatenated, resolved two major lineages, CLas-1 and -2. The CLas-1 clade, reported here for the first time, consisted of isolates from SA isolates and Pakistan. The CLas-2 sequences formed two groups, CLas-2-1 and -2-2, previously the 'Asiatic' and 'Floridian' strains, respectively. Members of CLas-2-1 originated from Southeast Asia, the USA, and other worldwide locations, while CLas-2-2 was identified only in Florida. This study provides the first snapshot into the status of the ACP-CLas pathosystem in SA. In addition, the results provide new insights into the pathosystem coevolution and global invasion histories of two ACP-CLas lineages with a predicted center of origin in South and Southeast Asia, respectively.

8.
Evol Appl ; 15(9): 1423-1435, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187189

RESUMO

Molecular epidemiology studies are essential to refine our understanding of migrations of phytopathogenic bacteria, the major determining factor in their emergence, and to understand the factors that shape their population structure. Microsatellite and minisatellite typing are useful techniques for deciphering the population structure of Xanthomonas citri pv. citri, the causal agent of Asiatic citrus canker. This paper presents a molecular epidemiology study, which has improved our understanding of the history of the pathogen's introductions into the Arabian Peninsula, since it was first reported in the 1980s. An unexpectedly high genetic diversity of the pathogen was revealed. The four distinct genetic lineages within X. citri pv. citri, which have been reported throughout the world, were identified in the Arabian Peninsula, most likely as the result of multiple introductions. No copper-resistant X. citri pv. citri strains were identified. The pathogen's population structure on Mexican lime (their shared host species) was closely examined in two countries, Saudi Arabia and Yemen. We highlighted the marked prevalence of specialist pathotype A* strains in both countries, which suggests that specialist strains of X. citri pv. citri may perform better than generalist strains when they occur concomitantly in this environment. Subclade 4.2 was the prevailing lineage identified. Several analyses (genetic structure deciphered by discriminant analysis of principal components, RST-based genetic differentiation, geographic structure) congruently suggested the role of human activities in the pathogen's spread. We discuss the implications of these results on the management of Asiatic citrus canker in the region.

9.
Plant Dis ; 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787007

RESUMO

Mango (Mangifera indica L.) is a popular tropical fruit crop in Saudi Arabia. However, susceptibility to diseases is a major factor that restrict the development of mango trees, reducing the yield and production (Ploetz, 2003). In December 2021, a survey was conducted for mango trees which were showing symptoms of decline in the field located in the district Al-Jumum of Makkah Province, in western Saudi Arabia (21°46'18.9"N 39°35'21.2"E). The disease severity was approximately 40% with 15% incidence of mango trees showing symptoms of twig dieback, leaf necrosis, leaf fall, and internal tissue necrosis as well as darkening within the vascular tissue upon splitting the infected branches. As the disease progressed, the affected branches were turned black-brown and dried up (Supplementary Figure S1). To isolate the pathogen, 20 symptomatic branches were arbitrarily sampled from different parts of the field and washed with tap water. Diseased branches were cut into 4 × 4 mm portions (between symptomatic and healthy tissues), submersed in 70% alcohol for 20 s, surface sterilized with 1% sodium hypochlorite solution for 3 min, rinsed with sterile distilled water, and cultured on potato dextrose plates (PDA). The plates were incubated at 25°C in darkness for 3-4 days, and then pure culture of the fungus was obtained by hyphal tip isolation technique. After 3 days of culturing at 25°C on PDA medium, the fungal colonies were grayish-white with uneven edges, and becoming dark grey to black colored after 5 days. After 21 days at 25 ℃ in constant light, the colonies produced dense aerial mycelium at which stage numerous dark colored pycnidia were formed and conidia were observed. Immature conidia were unicellular, hyaline, elliptical or ovate, and truncated at the base, becoming dark brown, thick-walled, one-septate, and longitudinal striation at maturity. Mature conidia measured 22.4±1.6 to 28.7±2.8 µm long and 12.8±1.3 to 15.6±2.4 µm width (n=40). The morphological characteristics of the colonies were consistent with to Lasiodiplodia theobromae (Pat.) Griff. & Maubl. (syn. Botryodiplodia theobromae Pat.) (Zambettakis, 1954; Sutton, 1980). Fifteen isolates were obtained, and a single representative isolate (LPT07-KSU) was used for further study. To further confirm the pathogen identification, genomic DNA was extracted from a single-spore culture using the DNeasy Plant Mini kit (QIAGEN, Hilden, Germany). The internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) and translation elongation factor 1-α, (tef1-α) were PCR amplification and sequencing with the following primers: ITS4 and ITS5 (White et al. 1990); and EF-1 and EF-2 (O'Donnell et al. 2008), respectively. The resulting ITS, and TEF1-α, sequences were submitted in GenBank under accession numbers ON192029, and ON209443, respectively. BLASTn analysis of these genes revealed ≥99% identity with the corresponding sequences of L. theobromae in GenBank (MH644067 for ITS region and MZ502303 for tef1-α gene). The result of phylogenetic analysis also showed that the pathogen was identified as L. theobromae, confirming the morphological identification. A pathogenicity assay was carried out on healthy 1-year-old mango cv. "Haden" seedlings. Infection followed the method of Saeed et al., (2017), consisting of excising a 5-mm-diameter tissue bark out of branches (~ 10 to 15-cm of the apical tip) and replacing it with a 5 mm PDA plugs colonized with L. theobromae from 20-days-old-culture or non-colonized plugs (controls). The area of inoculation was covered with parafilm to avoid dehydration. All seedlings were kept under greenhouse conditions (27°C, 16/8-h day/night, 70% RH) and monitored for disease development. Five replicates were used for inoculated and control plants. After 28 days, all inoculated plants displayed similar symptoms to those observed in the field, whereas control plants remained symptomless. Koch's postulates were fulfilled when typical colonies of L. theobromae were successfully re-isolated from the from symptomatic tissues. The test was repeated twice. This pathogen was reported to affect mango cultivation in China (Li et al., 2013), United Arab Emirates (Saeed et al., 2017), and Mexico (Bautista-Cruz et al., 2019). However, to the best of our knowledge, this is the first report of L. theobromae causing dieback disease on mango in Saudi Arabia. The occurrence of manage dieback highlights the importance of disease surveillance in the region. Effective control strategies are need to be established to reduce the losses.

10.
Pest Manag Sci ; 78(3): 1048-1059, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34773383

RESUMO

BACKGROUND: (Z,E)-9,12-tetradecadienyl acetate (ZETA, Z9,E12-14:OAc) is a major sex pheromone component for many stored-product moth species. This pheromone is used worldwide for mating disruption, detection, monitoring, and mass trapping in raw and processed food storage facilities. In this study, we demonstrate the biological production of ZETA pheromone by engineered yeast Saccharomyces cerevisiae. RESULTS: We mined the pheromone gland transcriptome data of the almond moth, Ephestia (Cadra) cautella (Walker), to trace a novel E12 fatty acyl desaturase and expressed candidates heterologously in yeast and Sf9 systems. Furthermore, we demonstrated a tailor-made ZETA pheromone bioproduction in yeast through metabolic engineering using this E12 desaturase, in combination with three genes from various sources coding for a Z9 desaturase, a fatty acyl reductase, and an acetyltransferase, respectively. Electrophysiological assays (gas chromatography coupled to an electroantennographic detector) proved that the transgenic yeast-produced ZETA pheromone component elicits distinct antennal responses. CONCLUSION: The reconstructed biosynthetic pathway in yeast efficiently produces ZETA pheromone, leaves an undetectable level of biosynthetic intermediates, and paves the way for the economically competitive high-demand ZETA pheromone's bioproduction technology for high-value storage pest control.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Mariposas/genética , Feromônios , Saccharomyces cerevisiae/genética , Spodoptera
11.
Environ Sci Pollut Res Int ; 29(10): 14036-14045, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34601676

RESUMO

Although radiation level is a serious concern which requires continuous monitoring, many existing systems are designed to perform this task. Radiation early warning system (REWS) is one of these systems which monitor the gamma radiation level in air. Such system requires high manual intervention, depends totally on experts' analysis, and has some shortcomings that can be risky sometimes. In this paper, the approach called RIMI (refining incoming monitored incidents) will be introduced which aims to improve this system while becoming more autonomous with keeping the final decision to the experts. A new method is presented which will help in changing this system to become more intelligent while learning from past incidents of each specific system.


Assuntos
Inteligência Artificial
12.
Cell Mol Biol (Noisy-le-grand) ; 68(9): 129-134, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36905263

RESUMO

Begomovirus is the largest genus in the family Geminiviridae and constitutes more than 445 virus species. Begomoviruses are characterized by single-stranded circular genomes with monopartite or bipartite components and transmitted by whitefly (Bemisia tabaci). Begomoviruses cause severe diseases in many economically important crops throughout the world. Typical symptoms of a begomovirus infection including severe leaf curling, vein thickening, vein darkening and reduced leaf size were observed in papaya plants in the Dammam district of the Eastern Province of Saudi Arabia during the growing season in 2022. A total of 10 samples were collected, and total genomic DNA was isolated from naturally infected papaya tree samples and subjected to PCR amplification using universal diagnostic primers for begomoviruses and associated satellites. Three PCR-amplified genomic components of begomoviruses and betasatellite namely P61Begomo (645 bp), P62Begomo (341 bp) and P62Beta (563 bp) were sent for Sanger DNA sequencing to Macrogen Inc. These partial viral genome sequences were submitted to Genbank database and accession numbers ON206051, ON206052 and ON206050 were assigned to P61Begomo, P62Begomo and P62Beta respectively. Phylogenetic analysis and pairwise nucleotide sequence identity studies identified P61Begomo was identified as Tomato yellow leaf curl virus, P62Begomo as DNA A component of a bipartite begomovirus Watermelon chlorotic stunt virus and P62Beta as begomovirus associated betasatellite; Cotton leaf curl Gezira betasatellite. To the best of our knowledge, this is the first report of a begomovirus complex infecting papaya (Carica papaya) in the Kingdom of Saudi Arabia.


Assuntos
Begomovirus , Carica , Carica/genética , Begomovirus/genética , Arábia Saudita , Filogenia , Doenças das Plantas , DNA
14.
Sci Rep ; 11(1): 8334, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859212

RESUMO

For decades, the American palm weevil (APW), Rhynchophorus palmarum, has been a threat to coconut and oil palm production in the Americas. It has recently spread towards North America, endangering ornamental palms, and the expanding date palm production. Its behavior presents several parallelisms with a closely related species, R. ferrugineus, the red palm weevil (RPW), which is the biggest threat to palms in Asia and Europe. For both species, semiochemicals have been used for management. However, their control is far from complete. We generated an adult antennal transcriptome from APW and annotated chemosensory related gene families to obtain a better understanding of these species' olfaction mechanism. We identified unigenes encoding 37 odorant-binding proteins (OBPs), ten chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), seven gustatory receptors (GRs), 63 odorant receptors (ORs), and 28 ionotropic receptors (IRs). Noticeably, we find out the R. ferrugineus pheromone-binding protein and pheromone receptor orthologs from R. palmarum. Candidate genes identified and annotated in this study allow us to compare these palm weevils' chemosensory gene sets. Most importantly, this study provides the foundation for functional studies that could materialize as novel pest management strategies.


Assuntos
Arecaceae/parasitologia , Sequenciamento do Exoma/métodos , Genes de Insetos/genética , Estudos de Associação Genética/métodos , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Olfato/genética , Gorgulhos/genética , Gorgulhos/fisiologia , Animais , Ásia , Europa (Continente) , América do Norte , Controle Biológico de Vetores/métodos
15.
Mol Ecol ; 30(9): 2025-2039, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33687767

RESUMO

Palm trees are of immense economic, sociocultural, touristic, and patrimonial significance all over the world, and date palm-related knowledge, traditions, and practices are now included in UNESCOs list of the Intangible Cultural Heritage of Humanity. Of all the pests that infest these trees, the red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), is its primary enemy. The RPW is a category-1 quarantine insect pest that causes enormous economic losses in palm tree cultivation worldwide. The RPW synchronizes mass gathering on the palm tree for feeding and mating, regulated by a male-produced pheromone composed of two methyl-branched compounds, (4RS, 5RS)-4-methylnonan-5-ol (ferrugineol) and 4(RS)-methylnonan-5-one (ferrugineone). Despite the importance of odorant detection in long-range orientation towards palm trees, palm colonization, and mating, the pheromone receptor has not been identified in this species. In this study, we report the identification and characterization of the first RPW pheromone receptor, RferOR1. Using gene silencing and functional expression in Drosophila olfactory receptor neurons, we demonstrate that RferOR1 is tuned to ferrugineol and ferrugineone and binds five other structurally related molecules. We reveal the lifetime expression of RferOR1, which correlates with adult mating success irrespective of age, a factor that could explain the wide distribution and spread of this pest. As palm weevils are challenging to control based on conventional methods, elucidation of the mechanisms of pheromone detection opens new routes for mating disruption and the early detection of this pest via the development of pheromone receptor-based biosensors.


Assuntos
Gorgulhos , Animais , Masculino , Feromônios , Quarentena , Receptores de Feromônios , Árvores , Gorgulhos/genética
16.
Plant Dis ; 105(9): 2410-2417, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33599515

RESUMO

Begomoviruses infect food, fiber, and vegetable crop plants, including tomato, potato, bean, cotton, cucumber, and pumpkin, and damage many economically important crop plants worldwide. Tomato leaf curl Sudan virus (ToLCSDV) is the most widespread tomato-infecting begomovirus in Saudi Arabia. Using phage display technology, this study isolated two camel-derived nanobodies against purified ToLCSDV virions from a library of antigen-binding fragments (VHH or nanobody) of heavy-chain antibodies built from an immunized camel. The isolated nanobodies also cross-reacted with purified tomato yellow leaf curl virus virions and showed significant enzyme-linked immunosorbent assay reactivity with extracts from plants with typical begomovirus infection symptoms. The results can pave the way to developing diagnostics for begomovirus detection, design, and characterization of novel nanomaterials based on virus-like particles, in addition to nanobody-mediated begomovirus resistance in economically important crops, such as tomato, potato, and cucumber.


Assuntos
Begomovirus , Anticorpos de Domínio Único , Solanum lycopersicum , Begomovirus/genética , Filogenia , Doenças das Plantas , Anticorpos de Domínio Único/genética
17.
BMC Genomics ; 20(1): 440, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151384

RESUMO

BACKGROUND: Cytochrome P450-dependent monooxygenases (P450s), constituting one of the largest and oldest gene superfamilies found in many organisms from bacteria to humans, play a vital role in the detoxification and inactivation of endogenous toxic compounds. The use of various insecticides has increased over the last two decades, and insects have developed resistance to most of these compounds through the detoxifying function of P450s. In this study, we focused on the red palm weevil (RPW), Rhynchophorus ferrugineus, the most devastating pest of palm trees worldwide, and demonstrated through functional analysis that upregulation of P450 gene expression has evolved as an adaptation to insecticide stress arising from exposure to the neonicotinoid-class systematic insecticide imidacloprid. RESULTS: Based on the RPW global transcriptome analysis, we identified 101 putative P450 genes, including 77 likely encoding protein coding genes with ubiquitous expression. A phylogenetic analysis revealed extensive functional and species-specific diversification of RPW P450s, indicating that multiple CYPs actively participated in the detoxification process. We identified highly conserved paralogs of insect P450s that likely play a role in the development of resistance to imidacloprid: Drosophila Cyp6g1 (CYP6345J1) and Bemisia tabaci CYP4C64 (CYP4LE1). We performed a toxicity bioassay and evaluated the induction of P450s, followed by the identification of overexpressed P450s, including CYP9Z82, CYP6fra5, CYP6NR1, CYP6345J1 and CYP4BD4, which confer cross-resistance to imidacloprid. In addition, under imidacloprid insecticide stress in a date palm field, we observed increased expression of various P450 genes, with CYP9Z82, CYP4BD4, CYP6NR1 and CYP6345J1 being the most upregulated detoxification genes in RPWs. Expression profiling and cluster analysis revealed P450 genes with multiple patterns of induction and differential expression. Furthermore, we used RNA interference to knock down the overexpressed P450s, after which a toxicity bioassay and quantitative expression analysis revealed likely candidates involved in metabolic resistance against imidacloprid in RPW. Ingestion of double-stranded RNA (dsRNA) successfully knocked down the expression of CYP9Z82, CYP6NR1 and CYP345J1 and demonstrated that silencing of CYP345J1 and CYP6NR1 significantly decreased the survival rate of adult RPWs treated with imidacloprid, indicating that overexpression of these two P450s may play an important role in developing tolerance to imidacloprid in a date palm field. CONCLUSION: Our study provides useful background information on imidacloprid-specific induction and overexpression of P450s, which may enable the development of diagnostic tools/markers for monitoring the spread of insecticide resistant RPWs. The observed trend of increasing tolerance to imidacloprid in the date palm field therefore indicated that strategies for resistance management are urgently needed.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Inseticidas , Neonicotinoides , Nitrocompostos , Phoeniceae , Gorgulhos/enzimologia , Animais , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/metabolismo , Corpo Adiposo/enzimologia , Perfilação da Expressão Gênica , Resistência a Inseticidas , Especificidade de Órgãos , Interferência de RNA , Análise de Sobrevida , Gorgulhos/genética
18.
Nanotechnology ; 30(6): 062001, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30523988

RESUMO

Nanostructured polymeric materials based on conductive nanofillers have promising applications in the energy storage field owing to the extraordinary characteristics of the nanofillers. Conductive nanofillers, such as graphene nanoplatelets, are characterized by small size, extraordinary surface area to volume ratio, high aspect-ratio and extremely low electrical resistivity. In this work, the dielectric behaviors and the corresponding energy storage capabilities of high aspect-ratio carbon nanofiller/polymer composites were reviewed. At the electrical percolation point, a conductive composite exhibits a sudden and remarkable enhancement in dielectric constant and dielectric loss. The challenge is to maintain the increase in dielectric constant while preventing the increase in dielectric loss. Various physical and chemical methodologies have been followed to overcome this challenge including surface chemistry modifications, physical alignment of nanofillers and utilizing of hybrid mixtures. Promising results were reported to minimize the energy loss due to the conductive network formation. Nanocomposites with a dielectric constant of 103 and dielectric loss of only 0.08 were successfully fabricated. However, more work is still needed for a further enhancement in dielectric constant and reduction in the energy loss and to improve the storage capabilities of the nanocomposites.

19.
20.
Plant Pathol J ; 33(1): 43-52, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28167887

RESUMO

A survey was conducted to determine the status of Lucerne transient streak virus (LTSV) in three high-yielding alfalfa regions in central Saudi Arabia (Riyadh, Qassim, and Hail) during 2014. Three hundred and eight symptomatic alfalfa, and seven Sonchus oleraceus samples were collected. DAS-ELISA indicated that 59 of these samples were positive to LTSV. Two isolates of LTSV from each region were selected for molecular studies. RT-PCR confirmed the presence of LTSV in the selected samples using a specific primer pair. Percentage identity and homology tree comparisons revealed that all Saudi isolates were more closely related to each other but also closely related to the Canadian isolate-JQ782213 (97.1-97.6%) and the New Zealand isolate-U31286 (95.8-97.1%). Comparing Saudi isolates of LTSV with ten other sobemoviruses based on the coat protein gene sequences confirmed the distant relationship between them. Eleven out of fourteen plant species used in host range study were positive to LTSV. This is the first time to document that Trifolium alexandrinum, Nicotiana occidentalis, Chenopodium glaucum, and Lathyrus sativus are new host plant species for LTSV and that N. occidentalis being a good propagative host for it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA