Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 10(2)2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29861445

RESUMO

Liver cancer treatments are often hindered by poor drug physicochemical properties, hence there is a need for improvement in order to increase patient survival and outlook. Combination therapies have been studied in order to evaluate whether increased overall efficacy can be achieved. This study reports the combined treatment of liver cancer cells with a combination treatment of chemotherapeutic agent paclitaxel and pro-apoptotic protein cytochrome C. In order to administer both agents in a single formulation, a poly(allylamine)-based amphiphile has been fabricated with the incorporation of a hybrid iron oxide-gold nanoparticle into its structure. Here, the insoluble paclitaxel becomes incorporated into the hydrophobic core of the self-assemblies formed in an aqueous environment (256 nm), while the cytochrome C attaches irreversibly onto the hybrid nanoparticle surface via gold-thiol dative covalent binding. The self-assemblies were capable of solubilising up to 0.698 mg/mL of paclitaxel (700-fold improvement) with 0.012 mg/mL of cytochrome C also attached onto the hybrid iron oxide-gold nanoparticles (HNPs) within the hydrophobic core. The formulation was tested on a panel of liver cancer cells and cytotoxicity was measured. The findings suggested that indeed a significant improvement in combined therapy (33-fold) was observed when compared with free drug, which was double the enhancement observed after polymer encapsulation without the cytochrome C in hepatocellular carcinoma (Huh-7D12) cells. Most excitingly, the polymeric nanoparticles did result in improved cellular toxicity in human endothelian liver cancer (SK-hep1) cells, which proved completely resistant to the free drug.

2.
Pharmaceutics ; 10(2)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649145

RESUMO

Hepatocellular carcinoma is an aggressive form of liver cancer that displays minimal symptoms until its late stages. Unfortunately, patient prognosis still remains poor with only 10% of patients surviving more than five years after diagnosis. Current chemotherapies alone are not offering efficient treatment, hence alternative therapeutic approaches are urgently required. In this work, we highlight the potential of combination of treatment of hepatocellular carcinoma with existing chemotherapies in combination with pro-apoptotic factor cytochrome C. In order to allow cytochrome C to cross the cellular membrane and become internalized, it has been immobilised onto the surface of hybrid iron oxide-gold nanoparticles. This novel approach has been tested in vitro on HepG2, Huh-7D and SK-hep-1 cell lines in order to elucidate potential as a possible alternative therapy with greater efficacy. The data from our studies show consistently that combining treatment of clinically used anticancer agents (doxorubicin, paclitaxel, oxaliplatin, vinblastine and vincristine) significantly increases the levels of apoptosis within the cell lines, which leads to cellular death. Hence, this combined approach may hold promise for future treatment regimes.

3.
J Control Release ; 266: 355-364, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28943195

RESUMO

Hybrid nanoparticles (HNPs) have shown huge potential as drug delivery vehicles for pancreatic cancer. Currently, the first line treatment, gemcitabine, is only effective in 23.8% of patients. To improve this, a thermally activated system was developed by introducing a linker between HNPs and gemcitabine. Whereby, heat generation resulting from laser irradiation of the HNPs promoted linker breakdown resulting in prodrug liberation. In vitro evaluation in pancreatic adenocarcinoma cells, showed the prodrug was 4.3 times less cytotoxic than gemcitabine, but exhibited 11-fold improvement in cellular uptake. Heat activation of the formulation led to a 56% rise in cytotoxicity causing it to outperform gemcitabine by 26%. In vivo the formulation outperformed free gemcitabine with a 62% reduction in tumor weight in pancreatic xenografts. This HNP formulation is the first of its kind and has displayed superior anti-cancer activity as compared to the current first line drug gemcitabine after heat mediated controlled release.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Desoxicitidina/análogos & derivados , Maleimidas/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Pró-Fármacos/administração & dosagem , Animais , Antimetabólitos Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Liberação Controlada de Fármacos , Feminino , Temperatura Alta , Humanos , Lasers , Maleimidas/química , Camundongos Nus , Nanopartículas/química , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/radioterapia , Pró-Fármacos/química , Carga Tumoral/efeitos dos fármacos , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA