Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1287885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028532
2.
Asian Pac J Cancer Prev ; 24(11): 3969-3977, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019257

RESUMO

OBJECTIVE: Breast cancer (BC) is a highly malignant neoplasm with resistance to therapeutics that are related to genes associated with multidrug resistance. The excessive expression of ATP-binding cassette transporters (ABCs) genes, including ABCA1 and ABCA3, is a primary factor contributing to the increased effluent of cell-toxic drugs and subsequent treatment resistance. Therefore, the current work aimed to explore the role of ABCA1 and ABCA3 in chemoresistance activity against cisplatin in breast cancer cells. METHODS: The current study compared the AMJ13 breast cancer cells derived from a woman Iraqi patient, which are hormone receptor-negative, with MCF-7 breast cancer cells, which are hormone receptor-positive.  Cytotoxic assay (CCK-8 assay) is used to measure the cell's viability and cytotoxic activity after it has been treated with cisplatin. Morphological Study using crystal violet stain to examine cytological changes was conducted. Quantitative RT-PCR is used to measure how much the ABCA1, and 3 genes mRNA are being expressed before and after treatment. RESULTS: The CCK-8 assay found that IC50 values of cisplatin in AMJ13 and MCF-7 cells were 202.2 µg/ml and 90.23 µg/ml, respectively. The IC50 value of AMJ13 is 2-fold higher than in MCF-7 cells. The QPCR study revealed that breast cancer cell lines AMJ13 and MCF-7 subjected to cisplatin showed upregulated levels of ABCA1 and ABCA3 expression. Experiments with cytotoxicity assays demonstrate that higher expression of ABCA1 and ABCA3 in AMJ13 and MCF-7 breast cancer cell lines is linked to their resistance.  Conclusion: The findings of this study suggest that the ABCA1 and ABCA3 transporters play a significant role in the resistance to cisplatin and,.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Neoplasias da Mama , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Transportador 1 de Cassete de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Cisplatino/farmacologia , Corantes , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
3.
Sci Rep ; 13(1): 16843, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803068

RESUMO

Combining viruses and nanoparticles may be a way to successfully treat cancer and minimize adverse effects. The current work aimed to evaluate the efficacy of a specific combination of gold nanoparticles (GNPs) and Newcastle disease virus (NDV) to enhance the antitumor effect of breast cancer in both in vitro and in vivo models. Two human breast cancer cell lines (MCF-7 and AMJ-13) and a normal epithelial cell line (HBL-100) were used and treated with NDV and/or GNPs. The MTT assay was used to study the anticancer potentials of NDV and GNP. The colony formation assay and apoptosis markers were used to confirm the killing mechanisms of NDV and GNP against breast cancer cell lines. p53 and caspase-9 expression tested by the qRT-PCR technique. Our results showed that combination therapy had a significant killing effect against breast cancer cells. The findings demonstrated that NDV and GNPs induced apoptosis in cancer cells by activating caspase-9, the p53 protein, and other proteins related to apoptosis, which holds promise as a combination therapy for breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Humanos , Feminino , Terapia Viral Oncolítica/métodos , Caspase 9/genética , Ouro , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Neoplasias da Mama/terapia , Apoptose , Imunoterapia , Vírus da Doença de Newcastle
4.
J Adv Pharm Technol Res ; 14(3): 235-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692005

RESUMO

The SARS-CoV-2 virus has the property of activating the coagulation process, which is responsible for producing thrombotic events which is considered as one of the most serious COVID-19 complications. Hypertension is a hazard factor for COVID-19 complications, and people who are treated with calcium entry blockers may halt the occurrence of thrombotic events. to evaluate the effect of amlodipine on some genes involved in the activation of the coagulation procedure in COVID-19 patients with hypertensive. observational, cross-sectional study. This study was carried out in the Department of Pharmacy at Al-Kut University College in Wasit, Iraq, in conjunction with Al Zahraa Hospital from June 2021 to March 2022. A total of 45 COVID-19 patients participated in this study who were grouped into as follows: Group I (n = 23) who had no previous history of hypertension and Group II (n = 22) who had previous hypertension and were treated with amlodipine. Expression of the calcium-sensing receptor (CaSR), coagulation factor V (F5), and methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1 Like (MTHFD1L) genes was determined. P values were calculated by Chi-square test for categorized facts and the Mann-Whitney test for incessant data. P ≤ 0.05 was considered statistically significant. Group II patients had significantly lower levels of CaSR, F5, and MTHFD1L gene expression compared with the corresponding levels in Group I patients. The expression level of MTHFD1L was elevated significantly in patients who had currently high blood pressure compared with normotensive patients in both the groups. Amlodipine is preferred in hypertensive patients who have COVID-19 because it attenuates the levels of gene expression that have an impact on the coagulation process.

5.
J Adv Pharm Technol Res ; 14(3): 226-228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692018

RESUMO

Fatigue is a prevalent symptom experienced by individuals diagnosed with multiple sclerosis (MS), which greatly affects their daily activities and causes frustration and depression, thus affecting their lives and society. This can be prevented through the use of medicines such as L-carnitine and modafinil. The study aimed to examine the effect of L-carnitine and modafinil on fatigue and which one is better for MS patients. This was a clinical trial. This clinical trial was conducted in cooperation between Al-Kut University College and an MS consultant at Al-Zahraa Teaching Hospital in addition to the private neurological clinic from October 1, 2022, to March 15, 2023. Forty participants were split into two groups; both of which were almost identical characteristics regarding age, disease duration, and degree of fatigue. Group I (n = 20): relapsing-remitting MS patients with fatigue received modafinil. Group II (n = 20): relapsing-remitting MS patients with fatigue received L-carnitine. Fatigue was evaluated according to the Modified Fatigue Impact Scale (MFIS). The statistical work was done in SPSS (IBM Corp., Chicago, IL, USA, version 24). P values were calculated by the t-test. Significant data have P = 0.05. After 2 months of treatment, the results show a significant decrease in MFIS in both groups with a higher reduction in patients who use L-carnitine. Both modafinil and L-carnitine show a significant influence on fatigue in MS patients, and these effects are more in L-carnitine.

6.
Int J Microbiol ; 2023: 3324247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720338

RESUMO

Breast cancer is a lethal disease in females worldwide and needs effective treatment. Targeting cancer cells with selective and safe treatment seems like the best choice, as most chemotherapeutic drugs act unselectively. Papaverine showed promising antitumor activity with a high safety profile and increased blood flow through vasodilation. At the same time, it was widely noticed that virotherapy using the Newcastle disease virus proved to be safe and selective against a broad range of cancer cells. Furthermore, combination therapy is favorable, as it attacks cancer cells with multiple mechanisms and enhances virus entrance into the tumor mass, overcoming cancer cells' resistance to therapy. Therefore, we aimed at assessing the novel combination of the AMHA1 strain of Newcastle disease virus (NDV) and nonnarcotic opium alkaloid (papaverine) against breast cancer models in vitro and in vivo. Methods. In vitro experiments used two human breast cancer cell lines and one normal cell line and were treated with NDV, papaverine, and a combination. The study included a cell viability MTT assay, morphological analysis, and apoptosis detection. Animal experiments used the AN3 mouse mammary adenocarcinoma tumor model. Evaluation of the antitumor activity included growth inhibition measurement; the immunohistochemistry assay measured caspase protein expression. Finally, a semiquantitative microarray assay was used to screen changes in apoptotic proteins. In vitro, results showed that the combination therapy induces synergistic cytotoxicity and apoptosis against cancer cells with a negligible cytotoxic effect on normal cells. In vivo, combination treatment induced a significant antitumor effect with an obvious regression in tumor size and a remarkable and significant expression of caspase-3, caspase-8, and caspase-9 compared to monotherapies. Microarray analysis shows higher apoptosis protein levels in the combination therapy group. In conclusion, this study demonstrated the role of papaverine in enhancing the antitumor activity of NDV, suggesting a promising strategy for breast cancer therapy through nonchemotherapeutic drugs.

7.
J Taibah Univ Med Sci ; 18(3): 579-586, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36818177

RESUMO

Objective: Breast cancer is one of the most lethal diseases in women, both worldwide and in Iraq. The high mortality rate is attributed primarily to the chemoresistance to conventional therapeutics. The search for effective and safe treatments is critical. One promising agent that has shown activity against various cancer types is retinoic acid (RA). Methods: RA was tested against a panel of international breast cancer cell lines and compared with Iraqi patient-derived hormone-independent breast cancer cells through MTT viability assays. Cytopathology was assessed under an inverted microscope, and apoptotic induction was evaluated with acridine orange propidium iodide assays. Results: AMJ13 breast cancer cells were more sensitive to killing induced by RA than MCF-7 and CAL-51 cells. By contrast, normal HBL-100 cells showed a negligible effect. Cytological changes were observed in all cancer cells treated with RA, whereas no changes were observed in normal HBL-100 cells. Iraqi patient-derived breast cancer cells showed a higher percentage of cells undergoing apoptosis after RA treatment than the other breast cancer cells. Conclusion: We suggest RA as a possible breast cancer treatment with potential for clinical application with high safety.

8.
J Popul Ther Clin Pharmacol ; 29(4): e46-e54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398597

RESUMO

Teratogenicity and hyperuricemia are considered as the major adverse effects of favipiravir, but less is known about other possible side effects which includes drug-induced liver damage and renal injury. In the current research, assessment of favipiravir-induced liver injury was performed by evaluating liver enzymes among patients with mild to moderate COVID-19 infection. A prospective cohort study was conducted on 66 patients diagnosed with mild to moderate COVID-19 infection who were treated with favipiravir for 5 days. During this period, a baseline assessment of liver enzymes (aspartate aminotransferase - AST, alanine transaminase - ALT and alkaline phosphatase - ALP) in addition to bilirubin before initiation of therapy and after 1 day of completion of therapy were carried out. The comparison of all measured parameters among all patients before and after receiving the treatment showed that non-significant differences were obtained in their levels. It was noticed that COVID-19 patients demonstrated high AST levels in which only 16 patients out of the all-subjected cases (66 patients) had AST levels of less than 45 U/L whereas the majority of patients showed normal ALT, ALP, and bilirubin levels. It was concluded that 5 days administration of favipiravir in mild to moderate COVID-19 patients who had no previous liver diseases did not affect the liver enzymes significantly and only transient elevations were occurred.


Assuntos
COVID-19 , Humanos , Estudos Prospectivos , Fígado , Fosfatase Alcalina/farmacologia , Bilirrubina/farmacologia
9.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144488

RESUMO

Glioblastoma multiforme (GBM) is considered to be one of the most serious version of primary malignant tumors. Temozolomide (TMZ), an anti-cancer drug, is the most common chemotherapeutic agent used for patients suffering from GBM. However, due to its inherent instability, short biological half-life, and dose-limiting characteristics, alternatives to TMZ have been sought. In this study, the TMZ-loaded PLGA nanoparticles were prepared by employing the emulsion solvent evaporation technique. The prepared TMZ-PLGA-NPs were characterized using FT-IR, zeta potential analyses, XRD pattern, particle size estimation, TEM, and FE-SEM observations. The virotherapy, being safe, selective, and effective in combating cancer, was employed, and TMZ-PLGA-NPs and oncolytic Newcastle Disease Virus (NDV) were co-administered for the purpose. An AMHA1-attenuated strain of NDV was propagated in chicken embryos, and the virus was titrated in Vero-slammed cells to determine the infective dose. The in vitro cytotoxic effects of the TMZ, NDV, and the TMZ-PLGA-NPs against the human glioblastoma cancer cell line, AMGM5, and the normal cell line of rat embryo fibroblasts (REFs) were evaluated. The synergistic effects of the nano-formulation and viral strain combined therapy was observed on the cell lines in MTT viability assays, together with the Chou-Talalay tests. The outcomes of the in vitro investigation revealed that the drug combinations of NDV and TMZ, as well as NDV and TMZ-PLGA-NPs exerted the synergistic enhancements of the antitumor activity on the AMGM5 cell lines. The effectiveness of both the mono, and combined treatments on the capability of AMGM5 cells to form colonies were also examined with crystal violet dyeing tests. The morphological features, and apoptotic reactions of the treated cells were investigated by utilizing the phase-contrast inverted microscopic examinations, and acridine orange/propidium iodide double-staining tests. Based on the current findings, the potential for the use of TMZ and NDV as part of a combination treatment of GBM is significant, and may work for patients suffering from GBM.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Vírus Oncolíticos , Laranja de Acridina , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Embrião de Galinha , Emulsões/uso terapêutico , Violeta Genciana , Glioblastoma/tratamento farmacológico , Humanos , Nanopartículas/química , Vírus da Doença de Newcastle , Propídio , Ratos , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Temozolomida/farmacologia
10.
Front Mol Biosci ; 9: 754100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172043

RESUMO

Oncolytic virotherapy is one of the emerging biological therapeutics that needs a more efficient in vitro tumor model to overcome the two-dimensional (2D) monolayer tumor cell culture model's inability to maintain tissue-specific structure. This is to offer significant prognostic preclinical assessment findings. One of the best models that can mimic the in vivo model in vitro are the three-dimensional (3D) tumor-normal cell coculture systems, which can be employed in preclinical oncolytic virus therapeutics. Thus, we developed our 3D coculture system in vitro using two types of breast cancer cell lines showing different receptor statuses cocultured with adipose tissue-derived mesenchymal stem cells. The cells were cultured in a floater tissue culture plate to allow spheroids formation, and then the spheroids were collected and transferred to a scaffold spheroids dish. These 3D culture systems were used to evaluate oncolytic Newcastle disease virus AMHA1 strain infectivity and antitumor activity using a tracking system of the Newcastle disease virus (NDV) labeled with fluorescent PKH67 linker to follow the virus entry into target cells. This provides evidence that the NDV AMHA1 strain is an efficient oncolytic agent. The fluorescently detected virus particles showed high intensity in both coculture spheres. Strategies for chemically introducing fluorescent dyes into NDV particles extract quantitative information from the infected cancer models. In conclusion, the results indicate that the NDV AMHA1 strain efficiently replicates and induces an antitumor effect in cancer-normal 3D coculture systems, indicating efficient clinical outcomes.

11.
Front Mol Biosci ; 9: 816510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936786

RESUMO

Cancer cells are distinguished by enhanced glucose uptake and an aerobic glycolysis pathway in which its products support metabolic demands for cancer cell growth and proliferation. Inhibition of aerobic glycolysis is a smart therapeutic approach to target the progression of the cancer cell. We employed acarbose (ACA), a particular alpha-glucosidase inhibitor, to induce glucose deprivation combined with oncolytic Newcastle disease virus (NDV) to enhance antitumor activity. In this work, we used a mouse model of breast cancer with mammary adenocarcinoma tumor cells (AN3) that were treated with ACA, NDV, and a combination of both. The study included antitumor efficacy, relative body weight, glucose level, hexokinase (HK-1) level by ELISA, glycolysis product (pyruvate), total ATP, oxidative stress (ROS and reduced glutathione), and apoptosis by immunohistochemistry. The results showed significant antitumor efficacy against breast cancer after treatment with combination therapy. Antitumor efficacy was accompanied by a reduction in body weight and glucose level, HK-1 downregulation, inhibition of glycolysis products (pyruvate), total ATP, induction of oxidative stress (increase ROS and decrease reduced glutathione), and apoptotic cell death. The findings propose a novel anti-breast cancer combination involving the suppression of glycolysis, glucose deprivation, oxidative stress, and apoptosis, which can be translated clinically.

12.
J Periodontal Implant Sci ; 52(3): 242-257, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35775699

RESUMO

PURPOSE: This study investigated periodontal ligament (PDL) restoration in osseointegrated implants using stem cells. METHODS: Commercial pure titanium and zirconium oxide (zirconia) were coated with beta-tricalcium phosphate (ß-TCP) using a long-pulse Nd:YAG laser (1,064 nm). Isolated bone marrow mesenchymal cells (BMMSCs) from rabbit tibia and femur, isolated PDL stem cells (PDLSCs) from the lower right incisor, and co-cultured BMMSCs and PDLSCs were tested for periostin markers using an immunofluorescent assay. Implants with 3D-engineered tissue were implanted into the lower right central incisors after extraction from rabbits. Forty implants (Ti or zirconia) were subdivided according to the duration of implantation (healing period: 45 or 90 days). Each subgroup (20 implants) was subdivided into 4 groups (without cells, PDLSC sheets, BMMSC sheets, and co-culture cell sheets). All groups underwent histological testing involving haematoxylin and eosin staining and immunohistochemistry, stereoscopic analysis to measure the PDL width, and field emission scanning electron microscopy (FESEM). The natural lower central incisors were used as controls. RESULTS: The BMMSCs co-cultured with PDLSCs generated a well-formed PDL tissue that exhibited positive periostin expression. Histological analysis showed that the implantation of coated (Ti and zirconia) dental implants without a cell sheet resulted in a well-osseointegrated implant at both healing intervals, which was confirmed with FESEM analysis and negative periostin expression. The mesenchymal tissue structured from PDLSCs only or co-cultured (BMMSCs and PDLSCs) could form a natural periodontal tissue with no significant difference between Ti and zirconia implants, consequently forming a biohybrid dental implant. Green fluorescence for periostin was clearly detected around the biohybrid implants after 45 and 90 days. FESEM showed the invasion of PDL-like fibres perpendicular to the cementum of the bio-hybrid implants. CONCLUSIONS: ß-TCP-coated (Ti and zirconia) implants generated periodontal tissue and formed biohybrid implants when mesenchymal-tissue-layered cell sheets were isolated from PDLSCs alone or co-cultured BMMSCs and PDLSCs.

13.
Adv Virol ; 2022: 1575605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721668

RESUMO

Cytokine storm is one of the causative deaths in a patient with severe acute respiratory syndrome. This study aimed at evaluating the prophylaxis effect of quercetin complexes with zinc and buffered ascorbic acid upon cytokine storm induction in mice and identifying the complex's acute toxicity. Mice were randomly divided into three groups: group A, control group, received 0.9% normal saline; group B received 100 mg/kg of the complex one hour before lipopolysaccharide (LPS) administration; and group C received the LPS IP 5 mg/kg. Then, levels of interleukin 1 and interleukin 6 were measured in the serum, and lung and kidney tissues were investigated for any changes that may have happened. Thirty mice were used to investigate the acute toxicity; mice were distributed into six groups: one control group and five treated groups; then several serial dilutions from the complex have been prepared for different concentrations from 5 g/kg to 0.312 g/kg. The animals were observed for 14 days. The LD50 was deduced by the straight-line equation calculated from the dose-response curve. The results in this study showed that group A had no significant tissue change. LPS group C showed tissue damage in the lung and kidney, which significantly prevented by the pretreated complex in group B. Moreover, the complex's acute toxicity value (LD50) was 655 mg/kg. In conclusion, the complex has significantly ameliorated LPS-induced acute lung and kidney injury, largely through suppression of inflammation; the large lethal dose value may make the complex have a promising therapeutic effect in the prevention of cytokine storm.

14.
Urol Ann ; 14(2): 147-151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711489

RESUMO

Aims: We compared the outcomes of unstented repair (UR) versus stented repair (SR) in patients with mid-shaft to coronal hypospadias (HS) to elucidate if SR has any advantage over the UR. Materials and Methods: We retrospectively studied our mid-shaft to coronal HS repair patients between January 2013 and January 2018. We recorded variables such as degree of HS, age at repair, surgeon, type of repair, suture used, stent usage, and standard early and late complications. Relative risk (RR) was calculated and P < 0.05 was considered significant. Results: We included 120 patients (63 UR, 57 SR). There was no statistically significant difference in any parameters in both the groups. All had either tubularized incised plate or Thiersch-Duplay procedure. Urethroplasty was done with PDS 6/0 in all cases. Trainees performed two-third of the repairs under variable supervision. Early complications included one UR patient having urinary retention needing insertion of urethral catheter, five SR patients having bleeding/swelling, and three UR having dysuria. All were managed conservatively. For late complications, 98 patients were available (UR: 51, SR: 47) with fistula in 17 (17.3%), UR 8 (15.6%) versus SR 9 (19.1%) (P = 0.5, RR = 1.2) meatal stenosis in 3, UR 3 versus SR 0 (P = 0.06, RR = 6.4) and glanular dehiscence 6, UR 4 versus SR 2 (P = 0.25, RR = 1.8). Conclusion: There were no statistically significant differences in the short-term complications between UR and SR for HS. In the long term, RR for meatal stenosis is higher in UR.

15.
Biochimie ; 195: 59-66, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066100

RESUMO

A characteristic of cancer cells is increased glucose uptake and glycolysis for energy production and hydroperoxide detoxification due to mitochondrial dysfunction. Thus, inhibition of glucose uptake and glycolysis represent smart novel therapy. We used 2-deoxyglucose (2DG) as a glycolysis inhibitor and acarbose (ACA), a specific alpha-glucosidase inhibitor, to decrease glucose uptake. Mice bearing mammary adenocarcinoma tumors were treated by 2DG and/or ACA. Relative tumor volume, tumor growth inhibition rate, relative body weight, glucose concentration, hexokinase-1 protein level by ELISA, pyruvate, and ATP (glycolysis products), reactive oxygen species (ROS), total glutathione T-GSH, apoptosis, and histopathology were measured in treated and untreated groups. Our results showed that combination therapy inhibited tumor volume and increased tumor growth inhibition rate, body weight reduction, decreasing glucose level, HK-1 level, and inhibition of glycolysis products. In addition, combination therapy induced oxidative stress, increase ROS, and decrease T-GSH. Furthermore, immunohistochemistry examination showed the broader area of apoptosis in breast cancer treated by combination agents. In conclusion, our result revealed that the novel combination inhibits glycolysis and glucose uptake and induced oxidative stress and apoptosis.


Assuntos
Neoplasias da Mama , Desoxiglucose , Acarbose/farmacologia , Animais , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Desoxiglucose/farmacologia , Feminino , Glucose/metabolismo , Glicólise , Humanos , Camundongos , Estresse Oxidativo
16.
Cell Reprogram ; 24(5): 271-282, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637623

RESUMO

Transdifferentiation means mature cell conversion into other mature cells. Ethical issues, epigenetic failure, or teratoma development are found in cellular reprogramming strategies. Thus, new methods are needed. This study aimed to develop a new novel formula of chemical molecules and growth factors that differentiate skin fibroblasts into insulin-producing cells (IPCs). Newborn mice fibroblasts differentiated using four induction methods into IPCs to search for the best method. Fibroblasts, stem cells, and pancreatic markers were identified using an immunocytochemistry (ICC) assay. Insulin was measured using ELISA and dithizone (DTZ) assays. The skin fibroblasts were induced successfully into IPCs. The best method to obtain IPCs was indicated by measuring insulin concentration in differentiated cell supernatant from all induced cells by the four methods. The protein expression of the pancreatic markers of induced cells increased with time, as indicated by the ICC assay. OCT3/4 increased on day 9, after which the expression tended to decrease. DTZ-positive clusters were observed on day 16. Secreted insulin of differentiated cells was injected in streptozotocin-induced diabetic mice, which decreased blood glucose levels after injection. This study indicated an efficient new chemical method for transdifferentiating skin fibroblasts into functional IPCs, which is a promising method for diabetes mellitus therapy.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animais , Glicemia/metabolismo , Diferenciação Celular , Diabetes Mellitus Experimental/metabolismo , Ditizona/metabolismo , Fibroblastos/metabolismo , Insulina/metabolismo , Camundongos , Estreptozocina/metabolismo
17.
Vet Anim Sci ; 14: 100201, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34522823

RESUMO

This is the first study to report on the isolation of bovine leukemia virus (BLV) from peripheral blood mononuclear cells of two cross bred cows in Iraq. The cattle were seropositive by ELISA when selected while being surveyed for the detection of BLV. Among six cows, two were cases of persistent lymphocytosis (PL). Cytopathology was characterized by the formation of multinucleated giant cells (syncytia) and cytoplasmic vacuoles. Moreover, the viruses produced clear plaques on the monolayer of the primary fetal calf kidney (FCK) cells. Inhibition of plaque formation by BLV-antisera suggested a diagnosis of BLV, which was further confirmed by PCR. Cells infected with the isolates were positive to a monoclonal antibody against the viral gp51 trans-membrane glycoprotein by immunocytochemistry. Both isolates replicated and induced cytopathic effects in bovine and human cell line cultures. Phylogenetic analysis based on partial gp51 env gene sequences revealed that Iraqi strain highly homogenous with Turkey strain (100%) and had 1% distance value with other world strains. In conclusion, this present study found that BLV-infected cattle with PL can be a source for viral isolation, and the cytopathological features of the virus infection are arranged and differ depending on the cell type. This is the first study to report on the isolation of the EBL virus in Iraq, and it provides the basis for further studies about a BLV Iraqi strain that can help control this disease.

18.
J Taibah Univ Med Sci ; 15(5): 363-373, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33132808

RESUMO

OBJECTIVES: The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. METHODS: hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission scanning electron microscopy (FESEM). The isolated hPDLSCs were implanted on the fabricated PCL. After 21 days, FESEM was conducted to evaluate the implanted scaffolds, and an MTT assay was performed to characterize the biological response of the PCL scaffold at different cell exposure durations (24, 48, and 72 h). RESULTS: Periostin was expressed in the expanded PDL cells, and this result revealed that 20% weight/volume PCL scaffold with a pore size of more than 10 µm was the best. The growth rates of PDLSCs were high. Cytotoxicity test of fabricated PCL scaffold demonstrated no significant change in the cell viability when compared with the negative control and no deteriorating or inhibitory effect on growth after different durations. CONCLUSIONS: A cell sheet was successfully formed by using PCL as a scaffold to cover dental implants and promote PDL cell attachment, proliferation, and growth for biohybrid implant construction.

19.
Int J Nanomedicine ; 15: 9025-9047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33235450

RESUMO

BACKGROUND: Linalool is a monoterpene compound with various potential therapeutic applications in several medical fields. Previous studies have indicated the activity of linalool against cell lines; however, its high level of toxicity restricts its use. The aim of this study was to design and manufacture compounds with a novel structure that can be used for loading linalool, to reduce its toxicity and improve its reachable ability. METHODS: We synthesized and characterized a new molecule for loading linalool onto gold nanoparticles (GNPs) capped with glutathione and conjugated with a CALNN peptide. Linalool was loaded onto the GNPs via the reaction of the surface groups of both linalool and the GNPs. Moreover, the target peptide could be loaded onto the surface of the GNPs via a chemical reaction. The cytotoxic effects of linalool-GNP (LG) and linalool-GNP-CALNN peptide (LGC) conjugates against ovarian cancer cells were investigated, as were the possible mechanisms underlying the induction of apoptosis. RESULTS: Our findings illustrated the significant antiproliferative effect of LG and LGC on SKOV-3 cells. The cytotoxicity assay demonstrated that LG and LGC were selectively toxic in cancer cells and induced apoptosis by activating caspase-8, the p53 protein, and various proteins involved in apoptosis. The present data demonstrated that LG and LGC have a high therapeutic potential and should be given particular consideration as anticancer drug-delivery systems, as LG and LGC were remarkably more cytotoxic against a cancer cell line than were linalool and GNPs alone. CONCLUSION: We concluded that LG and LGC are promising compounds that can be used for treating ovarian cancer (SKOV-3) cells via the induction of apoptosis through extrinsic and intrinsic pathways.


Assuntos
Monoterpenos Acíclicos/química , Apoptose , Glutationa/química , Ouro/química , Nanopartículas Metálicas/química , NF-kappa B/metabolismo , Peptídeos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Forma do Núcleo Celular/efeitos dos fármacos , Dano ao DNA , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Mutagênicos/toxicidade , Transporte Proteico/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
20.
Virusdisease ; 31(3): 341-348, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32904847

RESUMO

Newcastle disease virus (NDV) can modulate cancer cell signaling pathway and induce apoptosis in cancer cells. Cancer cells increase their glycolysis rates to meet the energy demands for their survival and generate ATP as the primary energy source for cell growth and proliferation. Interfering the glycolysis pathway may be a valuable antitumor strategy. This study aimed to assess the effect of NDV on the glycolysis pathway in infected breast cancer cells. Oncolytic NDV attenuated AMHA1 strain was used in this study. AMJ13 and MCF7 breast cancer cell lines and a normal embryonic REF cell line were infected with NDV with different multiplicity of infections (moi) to determine the IC50 of NDV through MTT assay. Crystal violet staining was done to study the morphological changes. NDV apoptosis induction was assessed using AO/PI assay. NDV interference with the glycolysis pathway was examined through measuring hexokinase (HK) activity, pyruvate, and ATP concentrations, and pH levels in NDV infected and non-infected breast cancer cells and in normal embryonic cells. The results showed that NDV replicates efficiently in cancer cells and spare normal cells and induce morphological changes and apoptosis in breast cancer cells but not in normal cells. NDV infected cancer cells showed decreased in the HK activity, pyruvate and ATP concentrations, and acidity, which reflect a significant decrease in the glycolysis activity of the NDV infected tumor cells. No effects on the normal cells were observed. In conclusion, oncolytic NDV ability to reduce glycolysis pathway activity in cancer cells can be an exciting module to improve antitumor therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...