Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacoeconomics ; 42(3): 329-341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38001394

RESUMO

BACKGROUND: Antimicrobial resistance is a growing public health concern. There is a global need to estimate the population-level value of developing new antimicrobials and to ensure the effective use of existing antimicrobials as strategies to counteract antimicrobial resistance. To this aim, population-level value criteria need to be considered alongside conventional value measures. OBJECTIVE: The objective of this study was to develop a novel modelling approach to estimate the value of new antimicrobials, considering the transmission, diversity and enablement elements of STEDI value. METHODS: We developed a population-based mathematical model for the assessment of antimicrobial value considering both prophylactic use of antimicrobials and the treatment of selected serious hospital-acquired infections in hospitals in the USA at a population level. Large-scale clinical and population healthcare data were used to inform a modelling-based analysis assessing the impact of introducing a new antimicrobial compared with continuing with no new antimicrobial, accounting for the transmission, diversity and enablement value of antimicrobial agents. RESULTS: Over a 10-year period, the addition of a new antimicrobial as part of an antimicrobial stewardship strategy in the USA was estimated to result in a proportional reduction of 9.03% in projected antimicrobial resistance levels. This yielded an estimated reduction of $64.3 million in hospitalization costs and a gain of over 153,000 quality-adjusted life-years at an economic value of over $15.4 billion over 10 years. Considering input uncertainty, the estimate of monetary benefit ranged from $11.1 to $21.4 billion. CONCLUSIONS: The use of a new antimicrobial for treatment and prophylactic indications yields considerable clinical and economic benefits including transmission diversity and enablement value. These findings may provide decision makers with important evidence to support investment in new antimicrobials and antimicrobial stewardship policy that address the patient, population and system burden associated with antimicrobial resistance.


Assuntos
Anti-Infecciosos , Infecção Hospitalar , Humanos , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Resistência Microbiana a Medicamentos
2.
Health Policy ; 136: 104892, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37632993

RESUMO

Antimicrobial resistance (AMR) is one of the major threats to global population health, and the antimicrobial market requires substantial reimbursement reform and/or significant financial incentives to function properly. To address these challenges, England piloted a new health technology evaluation process in conjunction with a new payment model in 2019. The value assessment was performed using a dedicated broader value framework for antibiotics for the first time. This so-called STEDI framework is an acronym based on the five value elements it covers (Spectrum, Transmission, Enablement, Diversity, and Insurance value). Learnings from the pilot show that there are important considerations when implementing this value framework: The STEDI value profile of an antibiotic strongly depends on the local context and is impacted by trade-offs between individual value elements. Decision makers should therefore act carefully when applying STEDI to avoid distorting the overall evaluation result. Considering the STEDI value profile of an antibiotic is an important part of its value assessment as it allows for distinguishing between higher- and lower-value products. However, given the complexities surrounding its value assessment, further research must be undertaken to improve the overall STEDI evaluation process.


Assuntos
Anti-Infecciosos , Seguro , Saúde da População , Humanos , Anti-Infecciosos/uso terapêutico , Antibacterianos/uso terapêutico , Inglaterra
3.
Pharmacoeconomics ; 41(12): 1657-1673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37587392

RESUMO

INTRODUCTION: Antimicrobial resistance remains a serious and growing threat to public health, both globally and in the UK, leading to diminishing effectiveness of antimicrobials. Despite a clear need for new antimicrobials, the clinical pipeline is insufficient, driven by high research and development costs and limited expected returns on investment. To counteract this, National Institute for Health and Care Excellence (NICE) and National Health Service (NHS) England have launched a reimbursement mechanism, de-linked from volume of sales, that aims to reduce economic risk by recognising the broader population-level value of antimicrobials. The objective of this study was to quantify the value of ceftazidime-avibactam for treating gram-negative infections in the UK considering some of these broader value elements unique to antimicrobials. METHODS: A previously developed dynamic disease transmission and cost-effectiveness model was applied to assess the value of introducing ceftazidime-avibactam to UK treatment practice in the management of gram-negative hospital-acquired infections in line with the licenced indications for ceftazidime-avibactam. Model inputs were parameterised using sources aligned to the UK perspective. RESULTS: The introduction of ceftazidime-avibactam into a two-line treatment sequence saved over 2300 lives, leading to a gain of 27,600 life years and 22,000 quality-adjusted life years (QALY) at an additional cost of £17 million, over a ten-year transmission period. Ceftazidime-avibactam was associated with a net monetary benefit of £642 million at willingness to pay threshold of £30,000 per QALY; even at a lower threshold of £20,000 per QALY, the net monetary benefit is £422 million. DISCUSSION: Increasing the diversity of antimicrobial treatments through the introduction of an additional antimicrobial, in this instance ceftazidime-avibactam, was associated with substantial clinical and economic benefits, when considering broader population-level value. Despite revealing considerable benefits, the value of ceftazidime-avibactam is only partially reflected in this analysis. Further efforts are required to fully operationalise the spectrum, transmission, enablement, diversity and insurance (STEDI) value framework and accurately reflect the population-level value of antimicrobials.


Assuntos
Ceftazidima , Infecções por Bactérias Gram-Negativas , Humanos , Ceftazidima/uso terapêutico , Antibacterianos/uso terapêutico , Análise Custo-Benefício , Medicina Estatal , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Reino Unido
4.
Artigo em Inglês | MEDLINE | ID: mdl-37502249

RESUMO

Objective: To quantify the economic burden of bacterial antimicrobial resistance in Thailand and estimate potential savings from improving the rate of appropriate empiric treatment, where effective coverage is provided within the first days of infection. Design: Cost-of-illness study. Methods: A cost-calculator, decision-tree model was developed using published data and records from 3 Thai hospitals for patients hospitalized with antimicrobial-resistant infections between 2015 and 2019. Direct and indirect costs of antimicrobial-resistant infections were assessed over a 5-year time horizon, with outcomes derived separately for cases having received appropriate empiric treatment versus inappropriate empiric treatment. In a real-world scenario, outcomes were estimated using actual rates of inappropriate empiric treatment, and in a hypothetical scenario, outcomes were estimated using decreased rates of inappropriate empiric treatment. Results: Over 5 years, in-hospital antimicrobial-resistant infections produced costs of approximately Thai baht (THB) 66.4 billion (USD 2.1 billion) in the real-world scenario and THB 65.8 billion (USD 2.1 billion) in the hypothetical scenario (0.9% cost savings relative to the real-world scenario). Most costs were attributable to income loss due to in-hospital mortality (real world: THB 53.7 billion [USD 1.7 billion]; 80.9% of costs; hypothetical: THB 53.2 billion [USD 1.7 billion]; 80.8% of costs) and hospitalization (real world: THB 10.3 billion [USD 330.8 million]; 15.5% of costs; hypothetical: THB 10.2 billion [USD 328.9 million]; 15.5% of costs). Conclusions: In-hospital antimicrobial-resistant infections produced a substantial economic toll in Thailand. This public health burden could be reduced with a strategy aimed at decreasing the rate of patients receiving inappropriate empiric treatment.

5.
Infect Dis Ther ; 12(7): 1891-1905, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410343

RESUMO

INTRODUCTION: Antimicrobial resistance (AMR) is a major public health threat worldwide. Greece has the highest burden of infections due to antibiotic-resistant bacteria among European Union/European Economic Area (EU/EEA) countries. One of the most serious AMR threats in Greece is hospital-acquired infections (HAIs) with limited treatment options (LTO) caused by resistant gram-negative pathogens. Thus, this study sought to estimate the current AMR burden in Greece and the value of reducing AMR to gram-negative pathogens for the Greek healthcare system. METHODS: The current model was adapted from a previously published and validated model of AMR to investigate the overall and AMR-specific burden of treating the most common HAIs with LTO in Greece and scenarios to demonstrate the benefits associated with reducing AMR levels from a third-party payer perspective. Clinical and economic outcomes were estimated over a 10-year time horizon; life years (LYs) and quality-adjusted life years (QALYs) were calculated over a lifetime (based on the annual number of infections over 10 years) at a willingness-to-pay of €30,000 per QALY gained and a 3.5% discount rate. RESULTS: In Greece, the current AMR levels in HAIs with LTO caused by four gram-negative pathogens account for > 316,000 hospital bed days, €73 million in hospitalisation costs, and > 580,000 LYs and 450,000 QALYs lost over 10 years. The monetary burden is estimated at €13.9 billion. A reduction in current AMR levels by 10-50% results in clinical and economic benefit; 29,264-151,699 bed days may be saved, leading to decreased hospitalisation costs (€6.8 million-€35.3 million) and a gain in LYs (85,328-366,162) and QALYs (67,421-289,331), associated with a monetary benefit of between €2.0 billion and €8.7 billion. CONCLUSION: This study shows the substantial clinical and economic burden AMR represents to the Greek healthcare system and the value that can be achieved by effectively reducing AMR levels.

6.
Infect Dis Ther ; 12(7): 1875-1889, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37341866

RESUMO

INTRODUCTION: Antimicrobial resistance (AMR) is a global public health challenge requiring a global response to which Australia has issued a National Antimicrobial Resistance Strategy. The necessity for continued-development of new effective antimicrobials is required to tackle this immediate health threat is clear, but current market conditions may undervalue antimicrobials. We aimed to estimate the health-economic benefits of reducing AMR levels for drug-resistant gram-negative pathogens in Australia, to inform health policy decision-making. METHODS: A published and validated-dynamic health economic model was adapted to the Australian setting. Over a 10-year time horizon, the model estimates the clinical and economic outcomes associated with reducing current AMR levels, by up to 95%, of three gram-negative pathogens in three hospital-acquired infections, from the perspective of healthcare payers. A willingness-to-pay threshold of AUD$15,000-$45,000 per quality-adjusted life-year (QALY) gained and a 5% discount rate (for costs and benefits) were applied. RESULTS: Over ten years, reducing AMR for gram-negative pathogens in Australia is associated with up to 10,251 life-years and 8924 QALYs gained, 9041 bed-days saved and 6644 defined-daily doses of antibiotics avoided. The resulting savings are estimated to be $10.5 million in hospitalisation costs, and the monetary benefit at up to $412.1 million. DISCUSSION: Our results demonstrate the clinical and economic value of reducing AMR impact in Australia. Of note, since our analysis only considered a limited number of pathogens in the hospital setting only and for a limited number of infection types, the benefits of counteracting AMR are likely to extend well beyond the ones demonstrated here. CONCLUSION: These estimates demonstrate the consequences of failure to combat AMR in the Australian context. The benefits in mortality and health system costs justify consideration of innovative reimbursement schemes to encourage the development and commercialisation of new effective antimicrobials.

7.
Infect Dis Ther ; 12(2): 527-543, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36544074

RESUMO

INTRODUCTION: Hospital-acquired infections (HAIs) and growing antimicrobial resistance (AMR) represent a significant healthcare burden globally. Especially in Greece, HAIs with limited treatment options (LTO) pose a serious threat due to increased morbidity and mortality. This study aimed to estimate the clinical and economic value of introducing a new antibacterial for HAIs with LTO in Greece. METHODS: A previously published and validated dynamic model of AMR was adapted to the Greek setting. The model estimated the clinical and economic outcomes of introducing a new antibacterial for the treatment of HAIs with LTO in Greece. The current treatment pathway was compared with introducing a new antibacterial to the treatment sequence. Outcomes were assessed from a third-party payer perspective, over a 10-year transmission period, with quality-adjusted life years (QALYs) and life years (LYs) gained considered over a lifetime horizon. RESULTS: Over the next 10 years, HAIs with LTO in Greece account for approximately 1.4 million hospital bed days, hospitalisation costs of more than €320 million and a loss of approximately 403,000 LYs (319,000 QALYs). Introduction of the new antibacterial as first-line treatment provided the largest clinical and economic benefit, with savings of up to 93,000 bed days, approximately €21 million in hospitalisation costs and an additional 286,000 LYs (226,000 QALYs) in comparison to the current treatment strategy. The introduction of a new antibacterial was linked to a monetary benefit of €6.8 billion at a willingness to pay threshold of €30,000 over 10 years. CONCLUSION: This study highlights the considerable clinical and economic benefit of introducing a new antibacterial for HAIs with LTO in Greece. This analysis shows the additional benefit when a new antibacterial is introduced to treatment sequences. These findings can be used to inform decision makers to implement policies to ensure timely access to new antibacterial treatments in Greece.


Antimicrobial resistance is a major issue for the Greek healthcare system. The overuse of antibacterial agents contributes to the growing resistance levels, making currently available treatment options less effective. As a result, there is an imperative need to address antimicrobial resistance in Greece. This study developed a mathematical model to investigate the clinical and economic benefits of introducing a new antibacterial to current treatment practice. The model uses regression equations to describe the relationships between inputs and outputs from a published and validated model, which describes the transmission and treatment of infections. The model is used to estimate the impact of a new treatment in Greece, considering differing treatment sequence scenarios. The largest health and financial benefits were seen when a new antibacterial was introduced at first line prior to currently used treatments. Over 10 years, savings of up to 93,000 hospital bed days and €21 million in hospitalisation costs could be achieved, as well as a gain of 286,000 patient life years and 226,000 patient quality-adjusted life years (QALYs), a measure of a patient's quality and length of life, over their remaining lifetime. The introduction of a new antibacterial into the current treatment pathway resulted in an overall monetary benefit of €6.8 billion over 10 years, when additional QALYs are valued at €30,000. This study demonstrates considerable health economic benefits of introducing a new antibacterial in Greece and can help inform decision makers when developing a national action plan to combat resistance and improve access to treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...