Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 11(1): 47, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23826796

RESUMO

BACKGROUND: Cyclic adenosine 3',5'-monophosphate (cAMP) is a key regulator of many cellular processes, including in the neuronal system, and its activity is tuned by Phosphodiesterase (PDE) activation. Further, the CC2D1A protein, consisting of N-Terminal containing four DM14 domains and C-terminal containing C2 domain, was shown to regulate the cAMP-PKA pathway. A human deletion mutation lacking the fourth DM14 and the adjacent C2 domain results in Non Syndromic Intellectual Disability (NSID) also referred to as Non Syndromic Mental Retardation (NSMR). FINDINGS: Here we demonstrate that in Mouse Embryonic Fibroblasts (MEF) CC2D1A co-localizes with PDE4D in the cytosol before cAMP stimulation and on the periphery after stimulation, and that the movement to the periphery requires the full-length CC2D1A. In CC2D1A mouse mutant cells, the absence of three of the four DM14 domains abolishes migration of the complex to the periphery and causes constitutive phosphorylation of PDE4D Serine 126 (S126) via the cAMP-dependent protein kinase A (PKA) resulting in PDE4D hyperactivity. Suppressing PDE4D activity with Rolipram in turn restores the down-stream phosphorylation of the "cAMP response element-binding protein" (CREB) that is defective in mouse mutant cells. CONCLUSION: Our findings suggest that CC2D1A is a novel regulator of PDE4D. CC2D1A interacts directly with PDE4D regulating its activity and thereby fine-tuning cAMP-dependent downstream signaling. Based on our in vitro evidence we propose a model which links CC2D1A structure and function to cAMP homeostasis thereby affecting CREB phosphorylation. We speculate that CC2D1A and/or PDE4D may be promising targets for therapeutic interventions in many disorders with impaired PDE4D function such as NSID.

2.
Curr Bioact Compd ; 9(4): 324-332, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24761137

RESUMO

The present work investigates the efficacy of using Artemisia annua in traditional medicine in comparison with chemical extracts of its bioactive molecules. In addition, the effects of location (Egypt and Jericho) on the bioactivities of the plant were investigated. The results showed that water extracts of Artemisia annua from Jericho have stronger antibacterial activities than organic solvent extracts. In contrast, water and organic solvent extracts of the Artemisia annua from Egypt do not have anti-bacterial activity. Furthermore, while the methanol extract of EA displayed high anticancer affects, the water extract of Egypt and the extracts of Jericho did not show significant anticancer activity. Finally, the results showed that the methanol and water extracts of Jericho had the highest antioxidant activity, while the extracts of Egypt had none. The current results validate the scientific bases for the use of Artemisia annua in traditional medicine. In addition, our results suggest that the collection location of the Artemisia annua has an effect on its chemical composition and bioactivities.

3.
J Biol Chem ; 287(39): 32697-707, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22865879

RESUMO

The success of gene therapy in the ocular environment is partly due to the presence of hyaluronan in vitreous. Here we explore the mechanism of hyaluronan-mediated enhancement of adenoviral vector transgene expression. Introduction of hyaluronan receptor CD44 into CD44-negative cells followed by transduction in the presence of vitreous with an adenoviral vector containing an IL-12-coding transgene increases IL-12 secretion. We demonstrate that sequential CD44 proteolysis is responsible for hyaluronan-mediated enhancement. Metalloproteinase or γ-secretase inhibitors decrease adenoviral-mediated transgene expression. Deletion of these proteolytic sites in CD44 also inhibits transgene expression. Expression of CD44 with a mutation to prevent phosphorylation of serine 325 inhibits the response to vitreous. Expression of the CD44 intracellular domain enhances transgene expression in the absence of vitreous. CD44-mediated enhancement of gene expression was observed with vectors using different promoters and appears because of an increase in mRNA production, not because of an increase in vector transduction as determined by quantitative RT-PCR and quantitative PCR, respectively. These data fit a model where the interaction of hyaluronan in vitreous and CD44 modulates transgene expression by initiating CD44 proteolysis and release of the cytoplasmic domain, resulting in increased transgene transcription.


Assuntos
Adenoviridae , Expressão Gênica , Vetores Genéticos , Receptores de Hialuronatos/metabolismo , Proteólise , Transgenes , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Células COS , Chlorocebus aethiops , Inibidores Enzimáticos/farmacologia , Humanos , Receptores de Hialuronatos/genética , Ácido Hialurônico/genética , Ácido Hialurônico/metabolismo , Interleucina-12/biossíntese , Interleucina-12/genética , Mutação , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Transcrição Gênica
4.
J Biol Chem ; 287(18): 14644-58, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22375002

RESUMO

Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacity to form dendrites and synapses in culture. At the biochemical level, CC2D1A transduces signals to the cyclic adenosine 3',5'-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation.


Assuntos
Encéfalo/embriologia , Núcleo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Encéfalo/metabolismo , Linhagem Celular , Núcleo Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Ligação a DNA/genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Elementos de Resposta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...